Research Article
BibTex RIS Cite

Processing and Characterization of Sepiolite Clay Containing Composites for Organic Brake Pad Application

Year 2020, Ejosat Special Issue 2020 (ISMSIT), 89 - 94, 30.11.2020
https://doi.org/10.31590/ejosat.818408

Abstract

Brake friction materials are crucial in transportation means. Organic brake pads are widely used in railway or automotive especially due to their low manufacturing cost compared to semi-metallic or ceramic pads. Owing to the complex requirements of brake lining systems, organic composite brake pads are a mixture of various components and are basically composed of binders, friction modifiers, fibers, lubricants, abrasives and various fillers. The choice of functional fillers and the optimization of the formulation is essential for improving the performances of these materials. Studies on the use of clay minerals such as kaolin or montmorillonite show that these fillers are effective. Therefore, in this study, a clay mineral, sepiolite was chosen. The composite samples prepared in this work are composed of Novolac resin as binder, cashew nut shell oil, ceramic fibers, glass fibers and other fillers. This study aims to explore the effect of sepiolite clay on the processing and on properties such as the density, the porosity or the hardness of the samples. Therefore, composite samples containing different amounts of sepiolite clay (5 wt. %, 10 wt. %, 15 wt. % and 20 wt. %) were prepared. For this purpose, the different components were mixed in a high speed mixer and pressed in a hot press at 160°C. Then, a post curing step at 180°C was applied. The density of the samples was determined and decreases from 2.22 g/cm3 to 2.10 g/cm3 with increasing sepiolite clay content. The porosity decreases from 4.47 % to 2.05% with increasing clay content until 15% and rises again to 2.81% with 20% of sepiolite content. Shore D hardness follows an inverse tendency to the density and rises from 85.3 to 90.8.

Thanks

Metisafe® Cleanroom and Biosafety Systems is acknowledged for its support concerning the fabrication and processing of the samples.

References

  • Ali, S., & Joshi, E. (2015). Effect of amount of straight phenolic resin on NVH Properties of a friction material composite. International Journal of Innovative Science, Engineering & Technology, 2(2), 489-492.
  • Alvarez, A. (1984). Sepiolate: Properties and uses. In A. Singer, & E. Galan, Developments in Sedimentology - Palygorskite - Sepiolite: Occurences, Genesis and Uses (pp. 253-287). Amsterdam - Oxford - New York - Tokyo: Elsevier.
  • Ayar, H. (1994). Disk fren balatalarında bileşimin performansa etkilerinin deneysel incelenmesi. Master Thesis, Selçuk University.
  • Boz, M., & Kurt, A. (2006). The influence of sepiolite content on friction-wear behaviour of bronze based friction materials. Journal of Polytechnic, 9(4), 303-310.
  • Gopal, P., Dharani, L., & Blum, F. D. (1994). Fade and wear characteristics of a glass-fiber reinforced phenolic friction material. Wear, 174, 119-127.
  • Han, Y., Tian, X., & Yin, Y. (2008). Effects of ceramic fiber on the friction preformance of automotive brake lining materials. Tribology Transactions, 51, 779-783.
  • Hou, K., Ouyang, J., Zheng, C., Zhang, J., & Yang, H. (2017). Surface-modified sepiolite fibers for reinforcing resin brake composites. Materials Express, 7(2), 104-112.
  • Kim, Y. C., Cho, M. H., Kim, S. J., & Jang, H. (2008). The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear, 264, 204-210.
  • Lee, E. J., Hwang, H. J., Lee, W. G., Cho, K. H., & Jang, H. (2010). Morphology and toughness of abrasive particles and their effects on the friction nad wear of friction materials: A case study with Zircon and Quartz. Tribology Letters, 37, 637-644.
  • Moore , D. M., & Reynolds, R. C. (1989). X-Ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.
  • Morshed, M. M., & Haseeb, A. M. (2004). Physical and chemical characteristics of commercially available brake shoe lining materials: a comparative study. Journal of Materials Processing Technology, 155-156, 1422-1427.
  • Önal, M., Yılmaz, H., & Sarıkaya, Y. (2008). Some physicochemical properties of the white sepiolite known as pipestone from Eskişehir, Turkey. Clays and Clay Minerals, 56(5), 511-519.
  • Shin, M. W., Cho, K. H., Lee, W. K., & Jang, H. (2010). Tribological characteristics of binder resins for brake friction materials at elevated temperatures. Tribology Letters, 38, 161-168.
  • Vicente Rodriguez, M. A., Lopez Gonzalez, D., & Banares Munoz, M. A. (1994). Acid activation of a Spanish sepiolite: Physicochemical characterization, free silica content and surface area of products obtained. Clay Minerals, 29, 361-367.
  • Wannik, W. B., Ayob, A. F., Syahrullail, S., Masjuki, H. H., & Ahmad, M. F. (2012). The effect of boron friction modifier on the performance of brake pads. International Journal of Mechanical and Materials Engineering, 7(1), 31-35.
  • Washabaugh, F. J. (1986). EMCOR 66 Ultra-short fibers for asbestos-free friction materials. SAE Transactions 1986-V95-86, (pp. 3928-3935).
  • Yalçin, H., & Bozkaya, Ö. (2004). Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic mélange, central Anatolia, Turkey. Clays and Clay Minerals, 52(2), 227-239.
  • Yanar, H., Purcek, G., & Ayar, H. H. (2020). Effect of steel fiber addition on the mechanical and tribological behavior of the composite brake pad materials. IOP Conf. Series: Materials Science and Engineering. 724, p. 012018. Cluj Napoca: IOP Publishing.

Organik Fren Balatası Uygulamalarına Yönelik Sepiyolit Kili İçeren Kompozit Üretimi ve Karakterizasyonu

Year 2020, Ejosat Special Issue 2020 (ISMSIT), 89 - 94, 30.11.2020
https://doi.org/10.31590/ejosat.818408

Abstract

Ulaşım araçlarında fren sürtünme malzemeleri büyük önem arz etmektedir. Yarı metalik ve seramik fren balatalarına kıyasla özellikle düşük üretim maliyetlerine sahip olduklarından dolayı, organik fren balataları demiryollarında ve otomotiv sektöründe yaygın olarak kullanılmaktadır. Fren balataları, karşılamaları gereken çok sayıda ve karmaşık gereksinimlerden/özelliklerden dolayı çok sayıda bileşenden oluşmaktadır. Bu karmaşık sistemler temel olarak bağlayıcılar, sürtünme düzenleyiciler, fiberler, yağlayıcılar, aşındırıcılar ve çeşitli dolgu malzemelerinin karışımından meydana gelmektedir. Fonksiyonel katkı malzemelerinin seçimi ve formülasyonun optimize edilmesi bu malzemelerin performansının iyileştirilmesinde başlıca rolu oynar. Yapılan çalışmalar, kaolin, montmorillonit gibi kil minerallerinin kullanımının balataların özelliklerinin iyileştirilmesinde etkili olduğunu göstermektedir. Bu nedenle bu çalışma kapsamında bir kil minerali olan sepiyolit seçilmiştir. Bu çalışmada novolak reçine (bağlayıcı olarak), kaju kabuğu yağı, seramik fiber, cam fiber ve diğer dolgu malzemelerinden oluşan numuneler hazırlanmıştır. Bu çalışmanın amacı sepiyolit kilinin kompozit numunelerin yoğunluğu, porozitesi ve sertliği gibi özellikleri üzerine olan etkisini araştırmaktır. Bu doğrultuda farklı miktarlarda sepiyolit kili içeren kompozit numuneler hazırlanmıştır (5 wt. %, 10 wt. %, 15 wt. % ve 20 wt. %). Kompozit numunelerin hazırlanma aşamasında bileşenler (Novolak reçine, kaju kabuğu yağı, seramik fiber, cam fiber ve diğer dolgu malzemeleri) yüksek hızlı karıştırıcı ile karıştırılmış ve ardından 160°C de preslenmiştir. Numunelere daha sonra 180°C de post kürleme işlemi uygulanmıştır. Numunelerin yoğunluğu ölçülmüş ve sepiyolit miktarı arttıkça 2,22 g/cm3’den 2,10 g/cm3’e düştüğü belirlenmiştir. Ayrıca sonuçlar göstermektedir ki porozite %15 sepiyolit oranına kadar %4,47’den %2,05’ye düşmüştür. Bunun yanı sıra %20 sepiyolit oranında porozite tekrar %2,81’e yükselmiştir. Numunelerin Shore D sertliği ise yoğunluğun aksine sepiyolit oranı arttıkça 85,3’den 90,8’e yükseliş göstermektedir.

References

  • Ali, S., & Joshi, E. (2015). Effect of amount of straight phenolic resin on NVH Properties of a friction material composite. International Journal of Innovative Science, Engineering & Technology, 2(2), 489-492.
  • Alvarez, A. (1984). Sepiolate: Properties and uses. In A. Singer, & E. Galan, Developments in Sedimentology - Palygorskite - Sepiolite: Occurences, Genesis and Uses (pp. 253-287). Amsterdam - Oxford - New York - Tokyo: Elsevier.
  • Ayar, H. (1994). Disk fren balatalarında bileşimin performansa etkilerinin deneysel incelenmesi. Master Thesis, Selçuk University.
  • Boz, M., & Kurt, A. (2006). The influence of sepiolite content on friction-wear behaviour of bronze based friction materials. Journal of Polytechnic, 9(4), 303-310.
  • Gopal, P., Dharani, L., & Blum, F. D. (1994). Fade and wear characteristics of a glass-fiber reinforced phenolic friction material. Wear, 174, 119-127.
  • Han, Y., Tian, X., & Yin, Y. (2008). Effects of ceramic fiber on the friction preformance of automotive brake lining materials. Tribology Transactions, 51, 779-783.
  • Hou, K., Ouyang, J., Zheng, C., Zhang, J., & Yang, H. (2017). Surface-modified sepiolite fibers for reinforcing resin brake composites. Materials Express, 7(2), 104-112.
  • Kim, Y. C., Cho, M. H., Kim, S. J., & Jang, H. (2008). The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear, 264, 204-210.
  • Lee, E. J., Hwang, H. J., Lee, W. G., Cho, K. H., & Jang, H. (2010). Morphology and toughness of abrasive particles and their effects on the friction nad wear of friction materials: A case study with Zircon and Quartz. Tribology Letters, 37, 637-644.
  • Moore , D. M., & Reynolds, R. C. (1989). X-Ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.
  • Morshed, M. M., & Haseeb, A. M. (2004). Physical and chemical characteristics of commercially available brake shoe lining materials: a comparative study. Journal of Materials Processing Technology, 155-156, 1422-1427.
  • Önal, M., Yılmaz, H., & Sarıkaya, Y. (2008). Some physicochemical properties of the white sepiolite known as pipestone from Eskişehir, Turkey. Clays and Clay Minerals, 56(5), 511-519.
  • Shin, M. W., Cho, K. H., Lee, W. K., & Jang, H. (2010). Tribological characteristics of binder resins for brake friction materials at elevated temperatures. Tribology Letters, 38, 161-168.
  • Vicente Rodriguez, M. A., Lopez Gonzalez, D., & Banares Munoz, M. A. (1994). Acid activation of a Spanish sepiolite: Physicochemical characterization, free silica content and surface area of products obtained. Clay Minerals, 29, 361-367.
  • Wannik, W. B., Ayob, A. F., Syahrullail, S., Masjuki, H. H., & Ahmad, M. F. (2012). The effect of boron friction modifier on the performance of brake pads. International Journal of Mechanical and Materials Engineering, 7(1), 31-35.
  • Washabaugh, F. J. (1986). EMCOR 66 Ultra-short fibers for asbestos-free friction materials. SAE Transactions 1986-V95-86, (pp. 3928-3935).
  • Yalçin, H., & Bozkaya, Ö. (2004). Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic mélange, central Anatolia, Turkey. Clays and Clay Minerals, 52(2), 227-239.
  • Yanar, H., Purcek, G., & Ayar, H. H. (2020). Effect of steel fiber addition on the mechanical and tribological behavior of the composite brake pad materials. IOP Conf. Series: Materials Science and Engineering. 724, p. 012018. Cluj Napoca: IOP Publishing.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bora Oral 0000-0003-1652-0337

Şerife Akkoyun 0000-0002-6676-6389

Publication Date November 30, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ISMSIT)

Cite

APA Oral, B., & Akkoyun, Ş. (2020). Processing and Characterization of Sepiolite Clay Containing Composites for Organic Brake Pad Application. Avrupa Bilim Ve Teknoloji Dergisi89-94. https://doi.org/10.31590/ejosat.818408