Research Article
BibTex RIS Cite

Proses şartlarının polivinilpirolidon polimerinin düşük toksisiteli solventler ile elektroeğirilme davranışı üzerindeki etkisi

Year 2020, Ejosat Special Issue 2020 (ISMSIT), 121 - 128, 30.11.2020
https://doi.org/10.31590/ejosat.819593

Abstract

Biyouyumluluk, suda çözünürlük ve kararlılık gibi özellikleri sayesinde polivinilpirolidon (PVP) biyomedikal uygulama alanlarında günden güne artan bir ilgi görmektedir. Polimerik bir malzeme olan PVP farklı uygulamalarda farmasötik yardımcı madde, kompleks oluşturucu ya da çözücü olarak kullanılmaktadır. PVP nanolifleri genellikle dimetilformamid (DMF) gibi toksisitesi yüksek çözücüler ile hazırlanmış PVP çözeltilerinden üretilmektedir. Bu çalışmanın amacı toksisitesi düşük seviyede olan çözücüler kullanılarak hazırlanan PVP çözeltilerinden nanolif elde etmek ve üretim süreci şartlarının polivinilpirolidon polimerinin düşük toksisiteli çözücülerde hazırlanmış çözeltilerinin elektroeğirilme davranışı üzerindeki etkisini araştırmaktır. Bu anlamda etil alkol, dimetilsülfoksit (DMSO) ve DMSO/etil alkol ve DMSO/aseton sistemlerinden oluşan ikili çözücüler ile karıştırılmış PVP çözeltileri hazırlanmış ve elektroeğirilmiştir. Çalışma kapsamında voltaj, akış hızı, iğne ucu-toplayıcı mesafesi gibi üretim süreci parametrelerinin etkisi araştırılmıştır. Ayrıca, çözeltinin özelliklerinin etkisini incelemek adına, polimerin derişiminin etkisi de incelenmiştir. Elektroeğirilmiş nanoliflerin morfolojileri ve çapları taramalı elektron mikroskobu (SEM) ile incelenmiştir. Çözeltinin viskozitesinin etkisi de ayrıca incelenmiştir. Etil alkol ile hazırlanmış % 7 oranında PVP içeren çözeltilerin elektroeğirilmesi sonucunda homojen silindirik nanolifler elde edilmiştir. Kullanılan üretim süreci parametreleri şu şekilde verilebilir: nanoliflerin üretiminde 17.5 kV’luk bir voltaj uygulanmıştır, iğne ucu-toplayıcı mesafesi 15 cm olarak sabitlenmiştir ve 1.25 mL/s oranında bir akış hızı kullanılmıştır. DMSO ile hazırlanan PVP çözeltileri ile katı nanolifler elde edilememiş ve toplayıcı üzerinde bir ıslaklık gözlemlenmiştir. Bu durum aslında DMSO’nun yeterince hızlı bir şekilde uçamadığını göstermektedir. Bu sebeple daha uçucu çözücüler olan etil alkol ve aseton ile ikili çözücü sistemler ile PVP çözeltileri hazırlanıp elektroeğirilmiştir. İkili çözücü sistemleri ile de DMSO çözeltileri ile olduğu gibi toplayıcı üzerinde bir ıslaklık gözlemlenmiştir.

References

  • Alghoraibi, I., & Alomari, S. (2018). Different methods for nanofiber design and fabrication. In A. Barhoum, M. Bechelany, & A. S. Makhlouf (Eds.), Handbook of Nanofibers (pp. 1-46). Springer International Publishing.
  • Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), pp. 64–75.
  • Geng, X., Kwon, O.-H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 5427–5432. Haide, S., Al-Zeghayer, Y., Ahmed Ali, F. A., Haider, A., Mahmood, A., Al-Masry, W. A., . . . Aijaz, M. O. (2013). Highly aligned narrow diameter chitosan electrospun nanofibers. Journal of Polymer Research, 105, pp. 1-11.
  • Haider, A., Haider, S., & Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), pp. 1165-1188.
  • Huang, Z.-M., Zhang, Y.-Z., Kotakic, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. 63(15), pp. 2223–2253.
  • Illia Krasnou, E. T. (2008). Rheological Behavior of Poly(vinylpyrrolidone)/Fullerene C60 Complexes in Aqueous Medium. Journal of Macromolecular Science, Part B:Physics, 500-510.
  • Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497.
  • Maleki, M., Natalello, A., Pugliese, R., & Gelain, F. (2017). Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides. Acta Biomaterialia, 51, pp. 268-278.
  • Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer produced by electrospinning. Nanotechnology, 7(3), pp. 216-223.
  • Rogina, A. (2014). Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Applied Surface Science, 296, pp. 221-230.
  • Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) – A versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54(9), pp. 923-943.
  • Unnithan, A. R., R.S., A., & Kim, C. S. (2015). Chapter 3 - Electrospinning of polymers for tissue engineering. In S. Thomas, Y. Grohens, & N. Ninan (Eds.), Nanotechnology Applications for Tissue Engineering (pp. 45-55). William Andrew - Elsevier.
  • Wortmann, M., Frese, N., Sabantina, L., Petkau, R., Kinzel, F., Gölzhäuser, A., . . . Ehrmann, A. (2019). New polymers for needleless electrospinning from low-toxic solvents. Nanomaterials, 9(1), p. 52.
  • Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42(20), pp. 3721-3726.
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 4403–4412.

Effect of Processing Conditions on the Electrospinning Behavior of Polyvinylpyrrolidone with Lower Toxicity Solvents

Year 2020, Ejosat Special Issue 2020 (ISMSIT), 121 - 128, 30.11.2020
https://doi.org/10.31590/ejosat.819593

Abstract

Due to its properties such as biocompatibility, water solubility and stability, polyvinylpyrrolidone (PVP) becomes more and more attractive for biomedical applications. This polymeric material is used in various applications such as pharmaceutical aid, complexing agent or solubilizer. PVP nanofibers are often produced using PVP solutions in solvents with high toxicity such as dimethylformamide (DMF). The aim of this study is to investigate the effect of process parameters on the electrospinning behavior of polyvinylpyrrolidone in solvents with lower toxicity such as dimethylsulfoxide (DMSO) or ethanol. Therefore, solutions of PVP in ethanol, PVP in DMSO or PVP in binary solvent systems such as DMSO/ethanol or DMSO/acetone were prepared and electrospun. The effect of process parameters such as voltage, flow rate, tip-to-collector distance were examined. A solution parameter, the polymer concentration was also considered. The morphology and diameter of the electrospun nanofibers were characterized by scanning electron microscopy (SEM). The effect of the solution viscosity was also questioned. Nanofibers with a homogeneous cylindrical morphology were obtained in the case of PVP in ethanol solutions for a polymer concentration of 7 wt.%. The process parameters were: a voltage of 15kV, tip-to-collector distance of 15 cm and a flow rate of 1.25 mL/h. PVP in DMSO solutions didn’t allow the obtention of solid nanofibers on the collector where a wetness zone appears. This shows that the solvent could not evaporate quickly. A wetness was also observed with PVP solutions prepared using binary solvent systems where a more volatile solvent such as ethanol or acetone was used.

References

  • Alghoraibi, I., & Alomari, S. (2018). Different methods for nanofiber design and fabrication. In A. Barhoum, M. Bechelany, & A. S. Makhlouf (Eds.), Handbook of Nanofibers (pp. 1-46). Springer International Publishing.
  • Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), pp. 64–75.
  • Geng, X., Kwon, O.-H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 5427–5432. Haide, S., Al-Zeghayer, Y., Ahmed Ali, F. A., Haider, A., Mahmood, A., Al-Masry, W. A., . . . Aijaz, M. O. (2013). Highly aligned narrow diameter chitosan electrospun nanofibers. Journal of Polymer Research, 105, pp. 1-11.
  • Haider, A., Haider, S., & Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), pp. 1165-1188.
  • Huang, Z.-M., Zhang, Y.-Z., Kotakic, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. 63(15), pp. 2223–2253.
  • Illia Krasnou, E. T. (2008). Rheological Behavior of Poly(vinylpyrrolidone)/Fullerene C60 Complexes in Aqueous Medium. Journal of Macromolecular Science, Part B:Physics, 500-510.
  • Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497.
  • Maleki, M., Natalello, A., Pugliese, R., & Gelain, F. (2017). Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides. Acta Biomaterialia, 51, pp. 268-278.
  • Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer produced by electrospinning. Nanotechnology, 7(3), pp. 216-223.
  • Rogina, A. (2014). Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Applied Surface Science, 296, pp. 221-230.
  • Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) – A versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54(9), pp. 923-943.
  • Unnithan, A. R., R.S., A., & Kim, C. S. (2015). Chapter 3 - Electrospinning of polymers for tissue engineering. In S. Thomas, Y. Grohens, & N. Ninan (Eds.), Nanotechnology Applications for Tissue Engineering (pp. 45-55). William Andrew - Elsevier.
  • Wortmann, M., Frese, N., Sabantina, L., Petkau, R., Kinzel, F., Gölzhäuser, A., . . . Ehrmann, A. (2019). New polymers for needleless electrospinning from low-toxic solvents. Nanomaterials, 9(1), p. 52.
  • Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42(20), pp. 3721-3726.
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 4403–4412.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nurcan Şenol 0000-0002-3699-433X

Şerife Akkoyun 0000-0002-6676-6389

Publication Date November 30, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ISMSIT)

Cite

APA Şenol, N., & Akkoyun, Ş. (2020). Effect of Processing Conditions on the Electrospinning Behavior of Polyvinylpyrrolidone with Lower Toxicity Solvents. Avrupa Bilim Ve Teknoloji Dergisi121-128. https://doi.org/10.31590/ejosat.819593