A novel nitro-benzene thiosemicarbazide appended rhodamine (the chemosensor BODN) was designed and prepared as a fluorescence ''turn-on'' and colorimetric chemosensor for the determination of Hg2+ ion in the presence of other metal cations. The chemosensor BODN showed an emission enhancing at 580 nm toward Hg2+ ions because of ''FRET-on'' (Fluorescence resonance energy transfer-on) proces. All spectral experiments were carried out in H2O/ACN (v/v, 20/80, pH=7.0) media at room temperature. The binding stoichiometry between the chemosensor BODN and Hg2+ was found to be 2:1 by job’s method and ESI-MS technique. The chemosensor BODN could detect Hg2+ ions at a concentration as low as 3.21 nM
A novel nitro-benzene thiosemicarbazide appended rhodamine (the chemosensor BODN) was designed and prepared as a fluorescence ''turn-on'' and colorimetric chemosensor for the determination of Hg2+ ion in the presence of other metal cations. The chemosensor BODN showed an emission enhancing at 580 nm toward Hg2+ ions because of ''FRET-on'' (Fluorescence resonance energy transfer-on) proces. All spectral experiments were carried out in H2O/ACN (v/v, 20/80, pH=7.0) media at room temperature. The binding stoichiometry between the chemosensor BODN and Hg2+ was found to be 2:1 by job’s method and ESI-MS technique. The chemosensor BODN could detect Hg2+ ions at a concentration as low as 3.21 nM