Research Article
BibTex RIS Cite

Using α-Fe2O3 Nanoparticles as an Adsorbent to Remove Orange G from Aqueous Solutions: Adsorption, Kinetic and Thermodynamic Properties

Year 2021, Issue: 21, 43 - 52, 31.01.2021
https://doi.org/10.31590/ejosat.798223

Abstract

One of the most important sources of environmental pollution is dyestuff waste released to the environment by industrial wastewater. Orange G (OG), one of the dyes frequently used in the industry, was adsorbed with α-Fe2O3 nanoparticles synthesized by the hydrothermal method. The characterization of synthesized α-Fe2O3 nanoparticles was determined by SEM-EDS and XRD analysis. For adsorption studies, the effects of contact time, pH, initial dye concentration, adsorbent amount, and temperature were investigated. As a result of the experiments, the optimum equilibration time was defined as 180 minutes and the optimum pH value was determined as 6.5. It was found that the most suitable isotherm model for the equilibrium data obtained from the adsorption of OG on α-Fe2O3 nanoparticles was the Freundlich model and the most suitable kinetic model was the pseudo-second-order model. With the result of the Langmuir model, it was determined that the maximum single layer adsorption capacity was 334 mg/g. With the thermodynamic studies It was evaluated that the adsorption of OG to α-Fe2O3 nanoparticles was endothermic, physical adsorption occurred and the adsorption event occurred by itself. As a result, it was demonstrated that α-Fe2O3 nanoparticles have great potential for the removal of dyestuffs from wastewater released as industrial waste.

References

  • Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Nanostructured Materials-Based Nanosensors. Journal of the Electrochemical Society, 167(3), 037554.
  • Akalin, H. A., Hicsonmez, U., & Yilma, H. (2017). Removal of cesium from Aqueous Solution by Adsorption onto Sivasyildizeli (Turkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic studies. Journal of Turkish General Studies, 5(1), 85-116.
  • Fil, B., Korkmaz, M., & Özmetin, G. (2014). An empirical model for adsorption thermodynamics of copper (II) from solutions onto illite clay-batch process design. Journal of the Chilean Chemical Society, 59(4), 2686-2691.
  • Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian journal of chemistry, 10, S3381-S3393.
  • Aydin, Ö., Özmetin, C., Korkmaz, M., & Fil, B. A. (2017). A semiempirical kinetic model for removal of iron (Fe3+) from saturated boric acid solution by ion exchange using amberlite IR–120 resin. Particulate Science and Technology, 35(5), 505-511.
  • Azmier, M., & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal - CHEM ENG J, 171, 510-516.
  • Bhalara, P., Punetha, D., & Balasubramanian, K. (2015). Kinetic and isotherm analysis for selective thorium (IV) retrieval from aqueous environment using eco-friendly cellulose composite. International journal of environmental science and technology, 12(10), 3095-3106.
  • Cao, R.-b., Chen, X.-q., Shen, W.-h., & Long, Z. (2011). A facile route to synthesize nano-hematite colloid. Materials Letters, 65(21), 3298-3300.
  • Cheknane, B., Bouras, O., Baudu, M., Basly, J.-P., & Cherguielaine, A. (2010). Granular inorgano-organo pillared clays (GIOCs): Preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions. Chemical Engineering Journal, 158(3), 528-534.
  • Chen, T., Wang, Q., Lyu, J., Bai, P., & Guo, X. (2020). Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study. Separation and Purification Technology, 231, 115930.
  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10-40.
  • Dontsova, T. A., Nahirniak, S. V., & Astrelin, I. M. (2019). Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose. Journal of Nanomaterials, 2019, 5942194.
  • Şenol, S. D. (2017). Mg Eş‐Katkılı Zn0. 95LI0. 05O Nano Parçacıkların Sentezi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(55), 203-210.
  • Gözeten, İ., & Savran, A. (2018) Metil Kırmızısının Silikajel Üzerindeki Çözeltiden Adsorpsiyonu: Denge İzotermleri Ve Kinetik İncelemeler. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 581-589.
  • Húmpola, P., Odetti, H., Fertitta, A. E., & Vicente, J. L. (2013). Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons. Journal of the Chilean Chemical Society, 58(1), 1541-1544. Iconaru, S. L., Guégan, R., Popa, C. L., Motelica-Heino, M., Ciobanu, C. S., & Predoi, D. (2016). Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Applied Clay Science, 134, 128-135.
  • Igwe, J. C., & Abia, A. (2007). Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Eclética Química, 32(1), 33-42.
  • Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2018). Modelling of adsorption kinetic processes—errors, theory and application. In Advanced sorption process applications: IntechOpen.
  • Katheresan, V., Kansedo, J., & Sie Yon, J. L. (2018). Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. Journal of Environmental Chemical Engineering, 6.
  • Kaur, S., Rani, S., & Mahajan, R. K. (2013). Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. Journal of Chemistry, 2013, 628582.
  • Khan, S., Pathak, B., & Fulekar, M. (2017). Spherical Surfaced Magnetic (Fe3O4)‎ Nanoparticles as Nano Adsorbent Material‎ for Treatment of Industrial Dye Effluents‎. International Journal of Nanoscience and Nanotechnology, 13(2), 169-175.
  • Kılıç, M., & Janabi, A. S. K. Investigation of Dyes Adsorption with Activated Carbon Obtained from Cordia myxa. Bilge International Journal of Science and Technology Research, 1(2), 87-104.
  • Kiziltaş, H., & Tekin, T. (2017). Increasing of photocatalytic performance of TiO2 nanotubes by doping AgS and CdS. Chemical Engineering Communications, 204(8), 852-857.
  • Lacin, O., Haghighatnia, A., Demir, F., Sevim, F., & Laçin, O. (2019). Adsorption characteristics and behaviors of natural red clay for removal of BY28 from aqueous solutions. Int J Trend Sci Res Dev, 3(2), 1037-1047.
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425-434.
  • Ma, J., Lian, J., Duan, X., Liu, X., & Zheng, W. (2010). α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties. The Journal of Physical Chemistry C, 114(24), 10671-10676.
  • Manyangadze, M., Chikuruwo, N. H. M., Narsaiah, T. B., Chakra, C. S., Radhakumari, M., & Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering, 31, 25-32.
  • Meetani, M., Rauf, M., Hisaindee, S., Khaleel, A., Alzamly, A., & Ahmad, A. (2011). Mechanistic studies of photoinduced degradation of Orange G using LC/MS. RSC Adv., 1, 490-497.
  • Mia, R., Selim, M., Shamim, A., Mugdho, M. C., Sultana, S., Armin, M., Naznin, H. (2019). Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. Journal of Textile Engineering, 5, 220‒226.
  • Nath, A., Chakraborty, S., & Bhattacharjee, C. (2014). Bioadsorbtion of industrial dyes from aqueous solution onto water hyacinth (Eichornia crassipes): equilibrium, kinetic, and sorption mechanism study. Desalination and Water Treatment, 52(7-9), 1484-1494.
  • Patiha, Heraldy, E., Hidayat, Y., & Firdaus, M. (2016). The langmuir isotherm adsorption equation: The monolayer approach. IOP Conference Series: Materials Science and Engineering, 107, 012067.
  • Pholosi, A., Naidoo, E. B., & Ofomaja, A. E. (2020). Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South African Journal of Chemical Engineering, 32, 39-55.
  • Qurashi, A., Zhong, Z., & Alam, M. W. (2010). Synthesis and photocatalytic properties of a-Fe2O3 nanoellipsoids. Solid State Sciences, 12, 1516-1519.
  • Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. Organic pollutants-monitoring, risk and treatment, 167-194.
  • Roto, R. (2018). Surface modification of Fe3O4 as magnetic adsorbents for recovery of precious metals. In Advanced Surface Engineering Research: IntechOpen.
  • Sahu, A. K., Mall, I. D., & Srivastava, V. C. (2007). Studies on the adsorption of furfural from aqueous solution onto low-cost bagasse fly ash. Chemical Engineering Communications, 195(3), 316-335.
  • Sen, T. (2015). Physical chemical and biological treatment processes for water and wastewater (pp. 9-11). Nova Science Publishers.
  • Şenol, Z. M., Gürsoy, N., Şimşek, S., Özer, A., & Karakuş, N. (2020). Removal of food dyes from aqueous solution by chitosan-vermiculite beads. International Journal of Biological Macromolecules, 148, 635-646.
  • Van der Bruggen, B. (2015). Freundlich Isotherm. In E. Drioli & L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1-2). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Wiersum, A. D., Chang, J.-S., Serre, C., & Llewellyn, P. L. (2013). An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal–organic frameworks. Langmuir, 29(10), 3301-3309.
  • Xu, S., Niu, X., Hou, Z., Gao, C., Lu, J., Pang, Y., Joshy, K. (2020). A multifunctional gelatine–quaternary ammonium copolymer: An efficient material for reducing dye emission in leather tanning process by superior anionic dye adsorption. Journal of Hazardous Materials, 383, 121142.
  • Yılmaz M. S. (2020). A Study of CO2 Adsorption Behaviour and Kinetics on KIT-6. Avrupa Bilim ve Teknoloji Dergisi, (19), 48-55.

Orange G’nin Sulu Çözeltilerden Uzaklaştırılması için α-Fe2O3 Nanopartiküllerinin Adsorban Olarak Kullanılması; Adsorpsiyon, Kinetik ve Termodinamik Özellikleri

Year 2021, Issue: 21, 43 - 52, 31.01.2021
https://doi.org/10.31590/ejosat.798223

Abstract

Çevre kirliliğinin en önemli kaynaklarından biri de endüstriyel atık sularıyla çevreye salınan boyarmadde atıklarıdır. Endüstride sıklıkla kullanılan boyalardan biri olan Orange G (OG), hidrotermal yöntemle sentezlenmiş α-Fe2O3 nanopartikülleri yardımıyla adsorpsiyon işlemine tabi tutulmuştur. Sentezlenen α-Fe2O3 nanopartiküllerinin karakterizasyonu SEM-EDS ve XRD analizleri ile belirlenmiştir. Adsorpsiyon çalışmaları için, temas süresinin, pH’ın, başlangıç boya konsantrasyonunun, adsorban miktarının ve sıcaklığın etkisi incelenmiştir. Yapılan denemeler sonucunda optimum dengelenme süresi 180 dakika ve optimum pH değeri 6,5 olarak belirlenmiştir. OG’nin α-Fe2O3 nanopartikülleri üzerinde adsorpsiyonundan elde edilen denge verilerine en uygun izoterm modelinin Freundlich modeli ve en uygun kinetik modelin yalancı ikinci mertebe modeli olduğu bulundu. Langmuir modeli yardımıyla maksimum tek tabakalı adsorpsiyon kapasitesinin 334 mg/g olduğu belirlendi. Termodinamik çalışmalarla, OG’nin α-Fe2O3 nanopartiküllerine adsorpsiyonunun endotermik olduğu, fiziksel adsorpsiyonun meydana geldiği ve adsorpsiyon olayının kendiliğinden gerçekleştiği sonucuna varıldı. Sonuç olarak, α-Fe2O3 nanopartiküllerinin endüstriyel atık olarak çevreye salınan atık sulardaki boyarmaddelerin uzaklaştırılması için büyük bir potansiyele sahip olduğu ortaya konuldu.

References

  • Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Nanostructured Materials-Based Nanosensors. Journal of the Electrochemical Society, 167(3), 037554.
  • Akalin, H. A., Hicsonmez, U., & Yilma, H. (2017). Removal of cesium from Aqueous Solution by Adsorption onto Sivasyildizeli (Turkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic studies. Journal of Turkish General Studies, 5(1), 85-116.
  • Fil, B., Korkmaz, M., & Özmetin, G. (2014). An empirical model for adsorption thermodynamics of copper (II) from solutions onto illite clay-batch process design. Journal of the Chilean Chemical Society, 59(4), 2686-2691.
  • Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian journal of chemistry, 10, S3381-S3393.
  • Aydin, Ö., Özmetin, C., Korkmaz, M., & Fil, B. A. (2017). A semiempirical kinetic model for removal of iron (Fe3+) from saturated boric acid solution by ion exchange using amberlite IR–120 resin. Particulate Science and Technology, 35(5), 505-511.
  • Azmier, M., & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal - CHEM ENG J, 171, 510-516.
  • Bhalara, P., Punetha, D., & Balasubramanian, K. (2015). Kinetic and isotherm analysis for selective thorium (IV) retrieval from aqueous environment using eco-friendly cellulose composite. International journal of environmental science and technology, 12(10), 3095-3106.
  • Cao, R.-b., Chen, X.-q., Shen, W.-h., & Long, Z. (2011). A facile route to synthesize nano-hematite colloid. Materials Letters, 65(21), 3298-3300.
  • Cheknane, B., Bouras, O., Baudu, M., Basly, J.-P., & Cherguielaine, A. (2010). Granular inorgano-organo pillared clays (GIOCs): Preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions. Chemical Engineering Journal, 158(3), 528-534.
  • Chen, T., Wang, Q., Lyu, J., Bai, P., & Guo, X. (2020). Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study. Separation and Purification Technology, 231, 115930.
  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10-40.
  • Dontsova, T. A., Nahirniak, S. V., & Astrelin, I. M. (2019). Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose. Journal of Nanomaterials, 2019, 5942194.
  • Şenol, S. D. (2017). Mg Eş‐Katkılı Zn0. 95LI0. 05O Nano Parçacıkların Sentezi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(55), 203-210.
  • Gözeten, İ., & Savran, A. (2018) Metil Kırmızısının Silikajel Üzerindeki Çözeltiden Adsorpsiyonu: Denge İzotermleri Ve Kinetik İncelemeler. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 581-589.
  • Húmpola, P., Odetti, H., Fertitta, A. E., & Vicente, J. L. (2013). Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons. Journal of the Chilean Chemical Society, 58(1), 1541-1544. Iconaru, S. L., Guégan, R., Popa, C. L., Motelica-Heino, M., Ciobanu, C. S., & Predoi, D. (2016). Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Applied Clay Science, 134, 128-135.
  • Igwe, J. C., & Abia, A. (2007). Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Eclética Química, 32(1), 33-42.
  • Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2018). Modelling of adsorption kinetic processes—errors, theory and application. In Advanced sorption process applications: IntechOpen.
  • Katheresan, V., Kansedo, J., & Sie Yon, J. L. (2018). Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. Journal of Environmental Chemical Engineering, 6.
  • Kaur, S., Rani, S., & Mahajan, R. K. (2013). Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. Journal of Chemistry, 2013, 628582.
  • Khan, S., Pathak, B., & Fulekar, M. (2017). Spherical Surfaced Magnetic (Fe3O4)‎ Nanoparticles as Nano Adsorbent Material‎ for Treatment of Industrial Dye Effluents‎. International Journal of Nanoscience and Nanotechnology, 13(2), 169-175.
  • Kılıç, M., & Janabi, A. S. K. Investigation of Dyes Adsorption with Activated Carbon Obtained from Cordia myxa. Bilge International Journal of Science and Technology Research, 1(2), 87-104.
  • Kiziltaş, H., & Tekin, T. (2017). Increasing of photocatalytic performance of TiO2 nanotubes by doping AgS and CdS. Chemical Engineering Communications, 204(8), 852-857.
  • Lacin, O., Haghighatnia, A., Demir, F., Sevim, F., & Laçin, O. (2019). Adsorption characteristics and behaviors of natural red clay for removal of BY28 from aqueous solutions. Int J Trend Sci Res Dev, 3(2), 1037-1047.
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425-434.
  • Ma, J., Lian, J., Duan, X., Liu, X., & Zheng, W. (2010). α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties. The Journal of Physical Chemistry C, 114(24), 10671-10676.
  • Manyangadze, M., Chikuruwo, N. H. M., Narsaiah, T. B., Chakra, C. S., Radhakumari, M., & Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering, 31, 25-32.
  • Meetani, M., Rauf, M., Hisaindee, S., Khaleel, A., Alzamly, A., & Ahmad, A. (2011). Mechanistic studies of photoinduced degradation of Orange G using LC/MS. RSC Adv., 1, 490-497.
  • Mia, R., Selim, M., Shamim, A., Mugdho, M. C., Sultana, S., Armin, M., Naznin, H. (2019). Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. Journal of Textile Engineering, 5, 220‒226.
  • Nath, A., Chakraborty, S., & Bhattacharjee, C. (2014). Bioadsorbtion of industrial dyes from aqueous solution onto water hyacinth (Eichornia crassipes): equilibrium, kinetic, and sorption mechanism study. Desalination and Water Treatment, 52(7-9), 1484-1494.
  • Patiha, Heraldy, E., Hidayat, Y., & Firdaus, M. (2016). The langmuir isotherm adsorption equation: The monolayer approach. IOP Conference Series: Materials Science and Engineering, 107, 012067.
  • Pholosi, A., Naidoo, E. B., & Ofomaja, A. E. (2020). Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South African Journal of Chemical Engineering, 32, 39-55.
  • Qurashi, A., Zhong, Z., & Alam, M. W. (2010). Synthesis and photocatalytic properties of a-Fe2O3 nanoellipsoids. Solid State Sciences, 12, 1516-1519.
  • Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. Organic pollutants-monitoring, risk and treatment, 167-194.
  • Roto, R. (2018). Surface modification of Fe3O4 as magnetic adsorbents for recovery of precious metals. In Advanced Surface Engineering Research: IntechOpen.
  • Sahu, A. K., Mall, I. D., & Srivastava, V. C. (2007). Studies on the adsorption of furfural from aqueous solution onto low-cost bagasse fly ash. Chemical Engineering Communications, 195(3), 316-335.
  • Sen, T. (2015). Physical chemical and biological treatment processes for water and wastewater (pp. 9-11). Nova Science Publishers.
  • Şenol, Z. M., Gürsoy, N., Şimşek, S., Özer, A., & Karakuş, N. (2020). Removal of food dyes from aqueous solution by chitosan-vermiculite beads. International Journal of Biological Macromolecules, 148, 635-646.
  • Van der Bruggen, B. (2015). Freundlich Isotherm. In E. Drioli & L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1-2). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Wiersum, A. D., Chang, J.-S., Serre, C., & Llewellyn, P. L. (2013). An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal–organic frameworks. Langmuir, 29(10), 3301-3309.
  • Xu, S., Niu, X., Hou, Z., Gao, C., Lu, J., Pang, Y., Joshy, K. (2020). A multifunctional gelatine–quaternary ammonium copolymer: An efficient material for reducing dye emission in leather tanning process by superior anionic dye adsorption. Journal of Hazardous Materials, 383, 121142.
  • Yılmaz M. S. (2020). A Study of CO2 Adsorption Behaviour and Kinetics on KIT-6. Avrupa Bilim ve Teknoloji Dergisi, (19), 48-55.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hakan Kızıltaş 0000-0003-3131-6422

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 21

Cite

APA Kızıltaş, H. (2021). Orange G’nin Sulu Çözeltilerden Uzaklaştırılması için α-Fe2O3 Nanopartiküllerinin Adsorban Olarak Kullanılması; Adsorpsiyon, Kinetik ve Termodinamik Özellikleri. Avrupa Bilim Ve Teknoloji Dergisi(21), 43-52. https://doi.org/10.31590/ejosat.798223