Year 2021, Volume , Issue 21, Pages 83 - 89 2021-01-31

Electromagnetic Shielding Effectiveness of Wollastonite/PANI/Colemanite Composites
Wollastanit/PANI/Kolemanit Kompozitlerin Elektromanyetik Kalkanlama Etkinliği

Ethem İlhan ŞAHİN [1] , Mehriban EMEK [2]


In this study, composites of wollastonite-colemanite were produced by using mixed oxide technique. The wollastonite-colemanite compositions were formed with various proportions for the structural analysis. The results of wollastonite-colemanite structural analysis indicated that second phase did not form in wollastonite and colemanite. The single phases wollastanite-colemanite compounds were measured after sintering between 900-1100°C for X-ray diffraction (XRD). Addionality, the wollastonite/polyaniline/colemanite composites were produced by hot pressing using the compositions of wollastonite-colemanite in different proportions and aniline. The weight ratios of (wollastonite-colemanite) and aniline were 1:1 respectively and epoxy resin was used to produce microwave shielding effectiveness composites. The microwave shielding performances of wollastonite/polyaniline/colemanite composites were investigated by shielding effect in 0 –8 GHz, using two–port vector network analyzer (VNA). A minimum of – 41.65 dB shielding effectiveness performance was obtained in 6.26 GHz at the thickness of 1.5 mm. According to the parameters determined in terms of properties, the wollastonite-colemanite compounds were produced as composite with a PANI base and their features were characterized for shielding effect. This microwave shielding performance can be modulated simply by controlling the content of polyaniline and content of wollastonite-colemanite in the samples for the wider and required frequency bands.
Bu çalışmada, wollastanit-kolemanit kompozitleri oksitlerin karışımı tekniği kullanılarak üretilmiştir. Wollastanit-kolemanit bileşimleri, yapısal analiz için çeşitli oranlarda oluşturulmuştur. Wollastonit-kolemanit yapısal analiz sonuçları, wollastanit ve kolemanit'te ikinci fazın oluşmadığını göstermiştir. Tek fazlı wollastanite-kolemanit bileşikleri, X-ışını kırınımı (XRD) için 900-1100°C arasında sinterlendikten sonra ölçüldü. Ayrıca wollastanit /polianilin/ kolemanit kompozitleri, farklı oranlarda wollastanit-kolemanit ve anilin bileşimleri kullanılarak sıcak presleme ile üretilmiştir. (Wollastonite-Kolemanit) ve anilinin ağırlık oranları sırasıyla 1:1 idi ve epoksi reçinesi mikrodalga kalkanlama etkili kompozitleri üretmek için kullanıldı. Wollastanit/ polianilin / kolemanit kompozitlerinin mikrodalga kalkanlama performansları, iki portlu vektör network analizörü (VNA) kullanılarak 0–8 GHz' de ekranlama etkisi ile incelenmiştir. 1.5 mm kalınlıkta 6.26 GHz'de minimum - 41.65 dB ekranlama etkinliği performansı elde edildi. Özellikler açısından belirlenen parametrelere göre wollastanit-kolemanit bileşikleri PANI bazlı kompozit olarak üretilmiş ve özellikleri kalkanlama etkisi için karakterize edilmiştir. Bu mikrodalga kalkanlama performansı, daha geniş ve gerekli frekans bantları için numunelerdeki polianilin içeriği ve wollastanit-kolemanit içeriği kontrol edilerek kolay bir şekilde modüle edilebilir.
  • [1] Baker, Z. Q., Abelazeez, M.K., Zihlif, A.M., (1988). Measurements of the ‘’ Magnex DC’’ Characteristics at Microwave Frequencies, J. Mater. Sci. 23:2995-3000.
  • [2] Abbasi, H., Antunes, M., Velasco, J.I., (2019). Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding, Prog. Mater. Sci. 103:319-373.
  • [3] Tong, X.C., (2009). Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press Boca Raton FL USA.
  • [4] Liu, J., Zhang, H.B., Sun, R., Liu, Y., Liu, Z., Zhou, A., Yu, Z.Z., (2017). Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding, Adv. Mater. 29(38):1702367.
  • [5] Kargar F., Barani, Z., Balinskiy, M., Magana, A.S., Lewis, J.S., Balandin, A., (2019). Dual-Functional Graphene Composites for Electromagnetic Shielding and Thermal Management, Adv. Electron. Mater. 5:1800558.
  • [6] Jia, X., Shen, B., Chen, Z., Zhang, L., Zheng, W., (2019). High-Performance Carbonized Waste Corrugated Boards Reinforced with Epoxy Coating as Lightweight Structured Electromagnetic Shields, ACS Sustainable Chem. Eng. 7(22):18718-18725.
  • [7] Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H-M., (2013). Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding, Adv. Mater. 25(9):1296-1300.
  • [8] Mondal, S., Das, P., Ganguly, S., Ravindren, R., Remanan, S., Bhawal, P., Das, T.K., Das, N.C., (2018). Thermal-air Ageing Treatment on Mechanical, Electrical, and Electromagnetic Inreference Shielding Properties of Lighweight Carbon Nanotube Based Polymer Nanocomposites, Compos. Part A (107):447-460.
  • [9] Mondal, S., Ganguly, S., Das, P., Khastgir, D., Das, N.C., (2017). Low Percolation Threshold and Electromagnetic Shielding Effectiveness of Nano-Structured Carbon Based Ethylene Methyl Acrylate Nanocomposites, Compos. Part B Eng. (119):41-56.
  • [10] Chung, D.D.L., (2001). Electromagnetic Interference Shielding Effectiveness of Carbon Materials, Carbon (39):279-285.
  • [11] Xiangcheng, L., Chung D.D.L., (1999). Electromagnetic Interference Shielding Using Continuous Carbon-Fiber Carbon-Matrix and Polymer-Matrix Composites, Compos. Part B (30):227–231.
  • [12] Bhingardive, V., Sharma, M., Suwas, S., Madras, G., Bose., S., (2015). Polyvinylidene Fluoride Based Lightweight and Corrosion Resistant Electromagnetic Shielding Materials, RSC Adv. (5):35909-35916.
  • [13] Chaudhary, A., Kumari, Kumar, R., Teotia, S., Singh, B.P., Singh, A.P., Dhawan, S.K., Dhakate, S.R., (2016). Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper With Exceptional Electromagnetic Interference Shielding, ACS Appl. Mater. Interfaces 8(16):10600-10608.
  • [14] Yan, D.X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.G., Wang, J.H., Li, Z.M., (2014). Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding, Adv. Funct. Mater. 25(4):559-566.
  • [15] Kim, M.S.,Kim, H.K., Byun, S.W., Jeong, S.H., Hong, Y.K., Joo, J.S., Song, K.T., Kim, J.K., Lee, C.J., Lee, J.Y., (2002). PET Fabric/Polyprole Composite with High Electrical Conductivity for EMI Shielding, Synth. Met. (126):233-239.
  • [16] Wessling, B., (1998). Dispersion as The Link Between Basic Research and Commercial Applications of Conductive Polymers (Polyaniline), Synth. Met. 93(2):143-154.
  • [17] Chen, Z., Yi, D., Shen, B., Zhang, L., Ma, X., Pang, Y., Liu, L., Wei, X., Zheng, W., (2018). Semi-Transparent Biomass-Derived Macroscopic Carbon Grids for Efficient and Tunable Electromagnetic Shielding, Carbon (139):271-278.
  • [18] Tolvanen, J., Hannu, J., Hietala, M., Kordas, K., Jantunen, H., (2019). Biodegradable Multiphase Poly(lactic acid)/Biochar/Graphite Composites for Electromagnetic Interference Shielding, Compos. Sci. Technol. (181): 107704.
  • [19] Sushmita, K., Menon, T.V., Sharma, S., Abhyankar, A.C., Madras, G., Bose, S., (2019). Mechanistic Insight Into the Nature of Dopants in Graphene Derivatives Influencing Electromagnetic Interference Shielding Properties in Hybrid Polymer Nanocomposites, J. Phys. Chem. C 123(4):2579-2590.
  • [20] Mishra, S., Katti, P., Kumar, S., Bose, S., (2019). Macroporous Epoxy-Carbon Fiber Structures with a Sacrificial 3D Printed Polymeric Mesh Suppresses Electromagnetic Radiation, Chem. Eng. J. 357:384-394.
  • [21] Al-Saleh, M.H., (2015). Influence of Conductive Network Structure on the EMI Shielding and Electrical Percolation of Carbon Nanotube/Polymer Nanocomposites, Synth. Met. (205):78-84.
  • [22] Zhang, Y., Fang, X.X., Wen, B.Y., (2015). Asymmetric Ni/PVC Films for High-Performance Electromagnetic Interference Shielding, Chin. J. Polym. Sci. 33(6):899-907.
  • [23] Yin X., Jin, J., Chen, X., Rosenkranz, A., Luo, J., (2019). Ultra-Wear-Resistant MXene-Based Composite Coating Via in Situ Formed Nanostructured Tribofilm, ACS Appl. Mater. Interfaces 11(35):32569-32576.
  • [24] Ghosh, S., Ganguly, S., Remanan, S., Das, N.C., (2019). Fabrication and Investigation of 3D Tuned PEG/PEDOT: PSS Treated Conductive and Durable Cotton Fabric for Superior Electrical Conductivity and Flexible Electromagnetic Interference Shielding, Compos. Sci. Technol. 181:107682.
  • [25] Kumar, A., Kumar, V., Kumar, M., Awasthi, K., (2017). Synthesis and Characterization of Hybrid PANI/MWCNT Nanocomposites for EMI Application, Polym. Compos. 39(11):3858-3868.
  • [26] Avadhanam, V., Thanasamy, D., Mathad, J.K., Tumuki, P., (2018). Single Walled Carbon Nano Tube – Polyaniline Core-Shell/Polyurethane Polymer Composite for Electromagnetic Interference Shielding, Polym. Compos. 39:4104-4114.
  • [27] Ramoa, S., Barra, G.M.O., Merlini, C., Livi, S., Soares, B.G., Pegoretti, A., (2018). Electromagnetic Interference Shielding Effectiveness and Microwave Absorption Properties of Thermoplastic Polyurethane/Montmorillonite-Polypyrrole Nanocomposites, Polym. Adv. Technol. 29:1377-1384.
  • [28] Yang, C.C., Gung, Y.J., Hung, W.C., Ting, T.H., Wu, K.H., (2010). Infrared and Microwave Absorbing of BaTiO3/Polyaniline and BaFe12O19/Polyaniline Composites, Composites Science and Technology 70:466-471.
  • [29] Schnitzler, D.C., Meruvia, M.S., Hümmelgen, I., Aldo, J., Zarbin, G., (2003). Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O2, Nanoparticles and Polyaniline Chemistry of Materials 15(24):4658-4665.
  • [30] Ma, X., Zhang, X., Li, Y., Li, G., Wang, M., Chen, H., Mi, Y., (2006). Preparation of Nano-Structured Polyaniline Composite Film Via ‘‘Carbon Nanotubes Seeding’’ Approach and its Gas-Response Studies, Macromolecular Materials and Engineering 291(1):75-82.
  • [31] Sahin, E.İ., Paker, S., Kartal, M., (2019). Microwave Absorbing Properties of Polyaniline- NiFe2O4:V Composites, J. Chem. Soc. Pak. 41:246-256.
  • [32] Chakradhar, R.P.S., Nagabhushana, B.M., Chandrappa, G.T., Ramesh, K.P., Rao, J.L., (2006). Solution Combustion Derived Nanocrystalline Macroporous Wollastonite Ceramics, Mater. Chem. Phys. 95(1):169-175.
  • [33] Maslennikova, G.N., Zhekisheva, S.Zh., and Konesheva, T.I., (1997). Wollastonite-Based Ceramic Materials, Glass and Ceramics 54: 126-128.
  • [34] Adylov, G.T., Voronov, G.V., Gornostaeva, S.A., Kulagina, N.A., Mansurova, E.P., Rumi, M. Kh., (2002). Use of Wollastonite from the Koitashskoe Deposit in the Production of Ceramics and Refractory Materials, Refractories and Industrial Ceramics 43:11-12.
  • [35] Abdul Karim, A.F., Ismail, H., (2018). The Effects of a Compatibiliser on Processing, Tensile Properties and Morphology of Polystyrene (PS)/Styrene-Butadiene Rubber (SBR)/Wollastonite Composites, Polymers and Polymer Composites 26(8–9):454-460.
  • [36] El-nemr, K.F., Ali, M.A., Hassan, M.M., (2012). Waste Newsprint Fibers For The Reinforcement of Radiation-Cured (Styrene-Butadiene Rubber)- Based Composites. Part II Characterization and Thermal Properties, J. Vinyl Addit. Technol. 18(4):228-234.
  • [37] Demir, F., (2010). Determination of Mass Attenuation Coefficients of Some Boron Ores at 59.54 keV by Using Scintillation Detector, Appl. Radiat. Isotopes 68:175-179.
  • [38] Celik, M.S., Suner, F., (1995). A Thermodynamic Analysis of the Decrepitation Process, Thermochim. Acta 245:167-174.
  • [39] Frost, Ray. L., Xi, Y., Scholz, R., Belotti, F. M., Filho, M.C., (2013). Infrared and Raman Spectroscopic Characterization of the Borate Mineral Colemanite-CaB3O4(OH)3.H2O-Implications for the Molecular Structure, J. Mol. Struct. 1037:23-28.
  • [40] Costa, C.M., Ribelles, J.L.G., Mendez, S.L., Appetecchi, G.B., Scrosati, B., (2014). Poly (Vinylidene Fluoride)-Based, Co-Polymer Separator Electrolyte Membranes for Lithium-Ion Battery Systems, J. Power Sources 245:779–786.
  • [41] Angulakshmi, N., Stephan, A.M., (2014). Electrospun Trilayer Polymeric Membranes as Separator for Lithium–Ion Batteries, Electrochim. Acta 127:167–172.
  • [42] Şahi̇n, E.I., Emek, M., Ertug, B., Kartal, M., (2020). Electromagnetic Shielding Performances of Colemanite/PANI/SiO2 Composites in Radar and Wider Frequency Ranges, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13(1):34-42.
  • [43] Soyaslan, D.D., (2019). Development of an Economical Box Setup for the Use of Electromagnetic Shielding Tests of Textile Composites, European Journal of Science and Technology 17:852-859.
  • [44] Kaya, A.I., Kırbas, I., Ciftci, A., (2019). Investigation of Surface Hardness, Combustion Behavior and Electromagnetic Shielding Properties of Wood Composite Coated with Vermiculite-Doped Rigid Polyurethane, European Journal of Science and Technology 17:206-214.
  • [45] Tariq, F., Shifa, M., Tariq, M., Hasan S.K. and Baloch, R.A., (2015). Hybrid Nanocomposite Material for EMI Shielding in Spacecrafts, Advanced Materials Research 1101:46-50.
  • [46] Chung, D.D.L., (2000). Materials for Electromagnetic Interference Shielding, Journal of Materials Engineering and Performance 9:350-354.
  • [47] Ting, T. H., Yu, R.P., Jau, Y.N., (2011). Synthesis and Microwave Absorption Characteristics of Polyaniline/NiZn Ferrite Composites in 2–40 GHz, Materials Chemistry and Physics 126:364-36.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0001-7859-9066
Author: Ethem İlhan ŞAHİN (Primary Author)
Institution: İSTANBUL TEKNİK ÜNİVERSİTESİ, BİLİŞİM ENSTİTÜSÜ, UYDU HABERLEŞMESİ VE UZAKTAN ALGILAMA (DR)
Country: Turkey


Orcid: 0000-0001-7322-9808
Author: Mehriban EMEK
Institution: ADIYAMAN ÜNİVERSİTESİ, GÖLBAŞI MESLEK YÜKSEKOKULU
Country: Turkey


Supporting Institution İstanbul Teknik Üniversitesi ,Marmara Üniversitesi
Thanks This research was funded by Marmara University and Istanbul Technical University. This work is attributed to Salim Sahin who died in 2014, and to Prof. Dr. Ayhan Mergen who died in 2017. The writers thank them and Hayrettin Simsek (Marmara University) for their friendship, advice and support
Dates

Publication Date : January 31, 2021

APA Şahin, E , Emek, M . (2021). Electromagnetic Shielding Effectiveness of Wollastonite/PANI/Colemanite Composites . Avrupa Bilim ve Teknoloji Dergisi , (21) , 83-89 . DOI: 10.31590/ejosat.816145