Research Article
BibTex RIS Cite

Isıl Enerji Depolama Uygulamaları İçin Selüloz Nanofibril Temelli Parafin İçeren Kompozit Faz Değiştiren Maddelerin Üretilmesi ve Karakterizasyonu

Year 2021, Issue: 22, 273 - 281, 31.01.2021
https://doi.org/10.31590/ejosat.848210

Abstract

Faz değiştiren maddeler (FDMler) sabit sıcaklıkta faz değişimine uğrayarak bulunduğu ortamdan ısı almak veya ortama ısı vermek yoluyla ısıl konforun sürekliliğini sağlayan akıllı malzemelerdir. Bu malzemelerin sıcaklığı enerji depolama süresince hemen hemen sabit kaldığından sabit sıcaklıktaki ısı depolama ve geri kazanma uygulamaları için tercih edilmektedirler. Yenilenebilir kaynaklardan elde edilen bir nanomalzeme olan selüloz nanofibril (SNF) ise birçok uygulamada özellikle kompozit malzemelerin geliştirilme aşamalarında dolgu maddesi olarak sıklıkla kullanılmaktadır. Bu çalışmada, ısıl enerji depolama sistemlerinde kullanıma yönelik selüloz nanofibril iskelete sahip parafin esaslı kompozit faz değiştiren maddeler üretilmiş ve karakterize edilmiştir. FDM olarak organik faz değiştiren madde sınıfında yer alan bir parafin olan n-hekzadekan (n-HD), kompozit matrisi olarak ise katyonik bir ajan olan setil trimetil amonyum bromür (STAB) varlığında dondurarak şablonlama yöntemiyle elde edilen selüloz nanofibril köpük (STAB-SNF) kullanılmıştır. Tek adımda impregnasyon prosesi yoluyla üretilen kompozit FDMlerin morfolojik, kimyasal ve ısıl karakterizasyonları sırasıyla Taramalı Elektron Mikroskobu (SEM), Fourier Dönüşümlü Kızılötesi (FT-IR) spektroskopisi ve Diferansiyel Taramalı Kalorimetre (DSC) ile gerçekleştirilmiştir. Elde edilen FDM kompozitlerin FDM içeriği Polarize Optik Mikroskop (POM) ile görüntülenmiştir. Değişen FDM miktarlarında yapılan impregnasyon işlemi sonucunda en yüksek FDM içeriğine %50 STAB-SNF köpük-%50 n-HD oranlarına sahip FDM kompozitinin sahip olduğu bulunmuştur. Yapılan DSC analizleri sonucunda bu kompozit malzemenin pik erime ve pik kristallenme sıcaklıklıkları sırasıyla 20,54 °C ve 13,55 °C bulunurken, erime entalpisi 54,7 J/g, kristallenme entalpisi ise -52,9 J/g olarak tespit edilmiştir. Kompozite ait n-hekzadekan içeriği ise %26,05 olarak hesaplanmıştır. Elde edilen analiz sonuçlarına göre üretilen kompozit malzeme sahip olduğu faz geçiş sıcaklığı ve gizli ısı depolama kapasitesi sayesinde enerji etkin-çevre dostu yeşil binalarda iç mekan uygulamalarında kullanım potansiyeline sahiptir.

Supporting Institution

Yalova Üniversitesi

Project Number

2020/YL/0005

Thanks

Bu çalışma Yalova Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından desteklenmiştir (Proje Numarası: 2020/YL/0005)

References

  • Badenhorst H (2019) A review of the application of carbon materials in solar thermal energy storage. Solar Energy 192:35–68.
  • Chen X., Gao H., Atinafu D.G., (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal,356, 641-661.
  • Gupta, S., Martoïa, F., Orgéas, L., Dumont, P.J.J., (2018). Ice-Templated Porous Nanocellulose-Based Materials: Current Progress and Opportunities for Materials Engineering. Applied Sciences, 8, 2463.
  • Jamekhorshid A., Sadrameli S.M., Farid M., (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531-542.
  • Kaboorani, A. and Riedl, B. (2015). Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products, 65, 45-55.
  • Lavoine N. and Lennart Bergström L., (2017). Nanocellulose-based foams and aerogels: processing, properties, and applications. Mater. Chem. A, 2017, 5,16105. Review. Journal of Materials Chemistry A, 5, 16105-16117.
  • Li, Y., Yu, S., Chen, P., Rojas, R., Hajian, A., Berglund, L., (2017). Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy, 34, 541-548.
  • Mert, M., Sert, M., Mert, H. (2018). Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (1) , 161-174.
  • Mert H.H., Mert M.S. (2019). Preparation and characterization of encapsulated phase change materials in presence of gamma alumina for thermal energy storage applications. Thermochimica Acta, 681,178382.
  • Mert M.S., Mert H.H., Sert, M. (2019a). Investigation of Thermal Energy Storage Properties of a Microencapsulated Phase Change Material Using Response Surface Experimental Design Methodology”, Applied Thermal Engineering, 149, 401-413.
  • Mert M.S., Mert H.H., Yılmaz Gümüş C., (2019b). Preparation and characterization of paraffin microcapsules for energy‐saving applications”, Journal of Applied Polymer Science, 136, 47874.
  • Mert H.H., 2020. PolyHIPE composite based‐form stable phase change material for thermal energy storage. International Journal of Energy Research, 44 (8), 6583-6594.
  • Mert, H., Mert, M., (2020). Faz Değiştiren Madde Olarak n-Hekzadekan Esaslı Mikrokapsüllerin Hazırlanması, Karakterizasyonu ve Isıl Performansının T-Kayıt Yöntemiyle Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 148-161.
  • Salajkova, M., Berglund L.A., Zhou, Q., (2012). Hydrophobic cellulose nanocrystals modified with quaternary ammonium Salts. Journal of Materials Chemistry, 22, 19798-19805.
  • Umair M.M., Zhang Y., Iqbal K., Zhang S., Tang B., (2019). Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage – A review. Applied Energy, 235, 846-873.
  • Wang, C., Feng, L., Li, W., Zheng, J., (2012). Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Solar Energy Materials and Solar Cells, 105, 21-26.
  • Wu, D., Wen W., Chen, S., Zhang, H., (2015). Preparation and properties of a novel form-stable phase change material based on a gelator. Journal of Materials Chemistry A, 3, 2589-2600.
  • Zaman, A., Huang, F., Jiang, M., Wei, W., Zhou Z., (2020). Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A review. Energy and Built Environment, 1(1), 60-76.

Production and Characterization of Cellulose Nanofibril-Based Composite Phase Change Materials Containing Paraffin for Thermal Energy Storage Applications

Year 2021, Issue: 22, 273 - 281, 31.01.2021
https://doi.org/10.31590/ejosat.848210

Abstract

Phase change materials (PCMs) are smart materials that ensure the continuity of thermal comfort by undergoing phase change at a constant temperature via receiving heat from the environment or giving heat to the environment. Since the temperature of these materials remains almost constant during energy storage, they are preferred for constant temperature heat storage and recovery applications. Cellulose nanofibril (CNF), which is a nanomaterial obtained from renewable sources, is frequently used as a filler in many applications, especially in the development of composite materials. In this study, paraffin-based composite phase change materials with cellulose nanofibril skeleton were produced and characterized for use in thermal energy storage systems. N-hexadecane (n-HD), a paraffin in the organic phase change materials class as PCM, and as a composite matrix, cellulose nanofibril foam (CTAB-CNF) obtained by freeze-templating method in the presence of cationic agent cetyl trimethyl ammonium bromide (CTAB), were used. Morphological, chemical and thermal characterizations of composite PCMs produced via one-step impregnation process were performed by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC), respectively. The PCM content of the obtained PCM composites were visualized with a polarized optical microscope (POM). As a result of the impregnation process, it was found that the PCM composite with 50% CTAB-CNF foam-50% n-HD ratio has the highest PCM content. Based on the DSC analysis, the melting and crystallization peak temperatures of the composite material were found to be 20.54 °C and 13.55 °C, respectively, while the melting enthalpy was 54.7 J/g, and the crystallization enthalpy was -52.9 J/g. The n-hexadecane content of the composite was calculated as 26.05%. According to the analysis results obtained, the composite material produced has the potential to be used in indoor applications of energy efficient, environmentally friendly green buildings thanks to its phase transition temperature and latent heat storage capacity. 

Project Number

2020/YL/0005

References

  • Badenhorst H (2019) A review of the application of carbon materials in solar thermal energy storage. Solar Energy 192:35–68.
  • Chen X., Gao H., Atinafu D.G., (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal,356, 641-661.
  • Gupta, S., Martoïa, F., Orgéas, L., Dumont, P.J.J., (2018). Ice-Templated Porous Nanocellulose-Based Materials: Current Progress and Opportunities for Materials Engineering. Applied Sciences, 8, 2463.
  • Jamekhorshid A., Sadrameli S.M., Farid M., (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531-542.
  • Kaboorani, A. and Riedl, B. (2015). Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products, 65, 45-55.
  • Lavoine N. and Lennart Bergström L., (2017). Nanocellulose-based foams and aerogels: processing, properties, and applications. Mater. Chem. A, 2017, 5,16105. Review. Journal of Materials Chemistry A, 5, 16105-16117.
  • Li, Y., Yu, S., Chen, P., Rojas, R., Hajian, A., Berglund, L., (2017). Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy, 34, 541-548.
  • Mert, M., Sert, M., Mert, H. (2018). Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (1) , 161-174.
  • Mert H.H., Mert M.S. (2019). Preparation and characterization of encapsulated phase change materials in presence of gamma alumina for thermal energy storage applications. Thermochimica Acta, 681,178382.
  • Mert M.S., Mert H.H., Sert, M. (2019a). Investigation of Thermal Energy Storage Properties of a Microencapsulated Phase Change Material Using Response Surface Experimental Design Methodology”, Applied Thermal Engineering, 149, 401-413.
  • Mert M.S., Mert H.H., Yılmaz Gümüş C., (2019b). Preparation and characterization of paraffin microcapsules for energy‐saving applications”, Journal of Applied Polymer Science, 136, 47874.
  • Mert H.H., 2020. PolyHIPE composite based‐form stable phase change material for thermal energy storage. International Journal of Energy Research, 44 (8), 6583-6594.
  • Mert, H., Mert, M., (2020). Faz Değiştiren Madde Olarak n-Hekzadekan Esaslı Mikrokapsüllerin Hazırlanması, Karakterizasyonu ve Isıl Performansının T-Kayıt Yöntemiyle Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 148-161.
  • Salajkova, M., Berglund L.A., Zhou, Q., (2012). Hydrophobic cellulose nanocrystals modified with quaternary ammonium Salts. Journal of Materials Chemistry, 22, 19798-19805.
  • Umair M.M., Zhang Y., Iqbal K., Zhang S., Tang B., (2019). Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage – A review. Applied Energy, 235, 846-873.
  • Wang, C., Feng, L., Li, W., Zheng, J., (2012). Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Solar Energy Materials and Solar Cells, 105, 21-26.
  • Wu, D., Wen W., Chen, S., Zhang, H., (2015). Preparation and properties of a novel form-stable phase change material based on a gelator. Journal of Materials Chemistry A, 3, 2589-2600.
  • Zaman, A., Huang, F., Jiang, M., Wei, W., Zhou Z., (2020). Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A review. Energy and Built Environment, 1(1), 60-76.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zehra Kanlı 0000-0002-3731-7883

Mehmet Selçuk Mert 0000-0002-8646-0133

Hatice Hande Mert 0000-0003-0743-1981

Project Number 2020/YL/0005
Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 22

Cite

APA Kanlı, Z., Mert, M. S., & Mert, H. H. (2021). Isıl Enerji Depolama Uygulamaları İçin Selüloz Nanofibril Temelli Parafin İçeren Kompozit Faz Değiştiren Maddelerin Üretilmesi ve Karakterizasyonu. Avrupa Bilim Ve Teknoloji Dergisi(22), 273-281. https://doi.org/10.31590/ejosat.848210