Research Article
BibTex RIS Cite

Çinko Ferrit Nanopartikül ile Modifiye Edilmiş PSf Kompozit Membranların Hazırlanması ve Performanslarının Belirlenmesi

Year 2021, Issue: 22, 159 - 166, 31.01.2021
https://doi.org/10.31590/ejosat.852822

Abstract

Bu çalışmada, hidrotermal sentez yöntemi ile çinko ferrit (ZnFe2O4) nanopartikül sentezlenerek XRD ve FTIR teknikleriyle karakterize edilmiştir. Boş PSf ve farklı kütle oranlarında çinko ferrit içeren nanofiltrasyon membranlar faz değişim metodu ile hazırlanmıştır. Hazırlanan membranlar FESEM ve AFM görüntülerinin incelenmesi, temas açısı, gözeneklilik ölçümleri, saf su akılarının belirlenmesi, kirlenme direnci ile tuz giderimi sonuçları ile morfoloji ve performans açısından karakterize edilmiştir. Çinko ferrit nanoparçacıklarının eklenmesi ile membranların gözenekliliği ve hidrofilikliğinde iyileşmeler gözlenmiş, bunun bir sonucu olarak saf su akısında önemli bir artış elde edilmiştir. Saf su akısı, PSf membran için 1.5 L/m2h olarak gerçekleşirken, %54.9 artışla %2.5 çinko ferrit içeren kompozit membran için 4.5 L/m2h olarak bulunmuştur. Membranların tuz giderme performansı 1000 ppm Na2SO4 çözeltisi kullanılarak incelenmiş ve en iyi performans %40.6 tuz giderimi ile %2.5 çinko ferrit içeren kompozit membranda elde edilmiştir. Ayrıca, membran uygulamalarında önemli bir problem olarak kabul edilen membran kirlenmesi BSA çözeltisi kullanılarak araştırılmıştır. BSA çözeltisi kullanılmadan önce ve sonraki saf su akılarının değişimi incelenmiştir. ZnFe2O4 katkılı membranların FRR değerleri, PSf membranın %56 olan FRR değerinden daha yüksek bulunmuştur. Bu, nanoparçacık eklenmesinin membranın kirlilik önleyici özelliğini önemli ölçüde iyileştirdiğini göstermektedir. Ayrıca, membranların kirlenme direncini daha detaylı incelemek için tersinir kirlenme oranı (Rr), tersinmez kirlenme oranı (Rir) ve toplam kirlenme (Rt) değerleri hesaplanmıştır. Ağırlıkça %2.5 çinko ferrit içeren membranın toplam kirlenme ve tersinmez kirlenme oranının PSf membrana kıyasla daha düşük olduğu bulunmuştur. Ayrıca, en yüksek tersinir kirlenme oranı elde edilmiştir. Sonuç olarak, PSf membrana çinko ferrit nanoparçacıkların katılması performansının iyileşmesine katkı sağladığını görülmüştür.

References

  • Agenson, K.O., & Urase, T. (2007). “Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications”, Separation and Purification Technology, 55(2), 147–156.
  • Ansari, S., Moghadassi, A.R., & Hosseini, S.M. (2015). “Fabrication of novel poly(phenylene ether ether sulfone) based nanocomposite membrane modified by Fe2NiO4 nanoparticles and ethanol as organic modifier”, Desalination, 357, 189–196.
  • Arumugham, T., Amimodu, R.G., Kaleekkal, N.J., & Rana, D. (2019). “Nano CuO/g-C3N4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application”, Journal of Environmental Sciences (China), 82, 57–69.
  • Ba-Abbad, M.M., Mohammad, A.W., Takriff, M.S., Rohani, R., Mahmoudi, E., Faneer, K.A., & Benamo, A. (2017). “Synthesis of iron oxide nanoparticles to enhance polysulfone ultrafiltration membrane performance for salt rejection”, Chemical Engineering Transactions, 56(1), 1699–1704.
  • Bidsorkhi, H.C., Riazi, H., Emadzadeh, D., Ghanbari, M., Matsuura, T., Lau, W.J., & Ismail, A.F. (2016). “Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane”, Nanotechnology, 27(41), 415706.
  • Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor, A., Johnson, D., & Hilal, N. (2017). “Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control”, Desalination, 402, 123–132.
  • Daraei, P., Madaeni, S. S., Ghaemi, N., Khadivi, M. A., Astinchap, B., & Moradian, R. (2013). “Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: Study of magnetic field induced casting”, Separation and Purification Technology, 109, 111–121.
  • Han, M. J., Baroña, G. N. B., & Jung, B. (2011). “Effect of surface charge on hydrophilically modified poly(vinylidene fluoride) membrane for microfiltration”, Desalination, 270(1–3), 76–83.
  • Hong, J., & He, Y. (2014). “Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning”, Desalination, 332(1), 67–75.
  • Hosseini, S. M., Amini, S. H., Khodabakhshi, A. R., Bagheripour, E., & Van der Bruggen, B. (2018). “Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water”, Journal of the Taiwan Institute of Chemical Engineers, 82, 169–178
  • Jalali, A., Shockravi, A., Vatanpour, V., & Hajibeygi, M. (2016). “Preparation and characterization of novel microporous ultrafiltration PES membranes using synthesized hydrophilic polysulfide-amide copolymer as an additive in the casting solution”, Microporous and Mesoporous Materials, 228, 1–13.
  • Koulivand, H., Shahbazi, A., & Vatanpour, V. (2019). “Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles”, Chemical Engineering Research and Design, 145, 64–75.
  • Luo, M. L., Zhao, J. Q., Tang, W., & Pu, C. S. (2005). “Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles”, Applied Surface Science, 249(1–4), 76–84.
  • Manohar, A., Krishnamoorthi, C., Naidu, K. C. B., & Pavithra, C. (2019). “Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method”, Applied Physics A: Materials Science and Processing, 125(7), 477.
  • Moradihamedani, P., Ibrahim, N. A., Ramimoghadam, D., Yunus, W. M. Z. W., & Yusof, N. A. (2014). “Polysulfone/zinc oxide nanoparticle mixed matrix membranes for CO2/CH4 separation”, Journal of Applied Polymer Science, 131(16).
  • Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N.M. (2018). “Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties”, Separation and Purification Technology, 192(October 2017), 369–382.
  • Oliveira, F.C.C., Rossi, L.M., Jardim, R.F., & Rubim, J. C. (2009). “Magnetic fluids based on γ-Fe2O3 and CoFe 2O4 nanoparticles dispersed in ionic liquids”, Journal of Physical Chemistry C, 113(20), 8566–8572.
  • Reddy, D.H.K., & Yun, Y.S. (2016). “Spinel ferrite magnetic adsorbents: Alternative future materials for water purification”, Coordination Chemistry Reviews, 315, 90–111.
  • Safarpour, M., Vatanpour, V., & Khataee, A. (2016). “Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance”, Desalination, 393, 65–78.
  • Semblante, G.U., Tampubolon, S.D.R., You, S.J., Lin, Y.F., Chang, T.C., & Yen, F.C. (2013). “Fouling reduction in membrane reactor through magnetic particles”, Journal of Membrane Science, 435, 62–70.
  • Seyyed Shahabi, S., Azizi, N., Vatanpour, V., & Yousefimehr, N. (2020). “Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination”, Separation and Purification Technology, 235, 116134.
  • Tyczkowski, J., Krawczyńska, M., & Kazimierski, P. (2007). “Modification of Poly(propylene) Membranes for Electrochemical Cells by Low-Temperature Plasma Treatment”, Plasma Processes and Polymers, 4(S1), S1086–S1090.
  • Vatanpour, V., Faghani, S., Keyikoglu, R., & Khataee, A. (2020). “Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite”, Carbohydrate Polymers, 11(7), 413.
  • Xie, T., Xu, L., Liu, C., & Wang, Y. (2013). “Magnetic composite ZnFe2O4 /SrFe12O19 : Preparation, characterization, and photocatalytic activity under visible light”, Applied Surface Science, 273, 684–691.
  • Yang, Z., Wan, Y., Xiong, G., Li, D., Li, Q., Ma, C., Luo, H. (2015). “Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties”, Materials Research Bulletin, 61, 292–297.
  • Yu, H. Y., Xu, Z. K., Yang, Q., Hu, M. X., & Wang, S. Y. (2006). “Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid”, Journal of Membrane Science, 281(1–2), 658–665.
  • Zareei, F., & Hosseini, S.M. (2019). “A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property”, Separation and Purification Technology, 226, 48–58.
  • Zhang, D., Karkooti, A., Liu, L., Sadrzadeh, M., Thundat, T., Liu, Y., & Narain, R. (2018). “Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes”, Journal of Membrane Science, 549, 350–356.
  • Zinadini, S., Rostami, S., Vatanpour, V., & Jalilian, E. (2017). “Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite”, Journal of Membrane Science, 529, 133–141.
  • Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014a). “Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates”, Journal of Membrane Science, 453, 292–301.
  • Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014b). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453, 292–301.

Preparation of PSf Composite Membranes Modified with Zinc Ferrite Nanoparticle and Determination of Their Performance

Year 2021, Issue: 22, 159 - 166, 31.01.2021
https://doi.org/10.31590/ejosat.852822

Abstract

In the study, zinc ferrite (ZnFe2O4) nanoparticles were synthesized by the hydrothermal synthesis method and characterized by FTIR and XRD techniques. Blank PSf and nanofiltration membranes containing different mass ratios of zinc ferrite were prepared by phase inversion process. The prepared membranes were characterized in terms of morphology and performance by examining FESEM and AFM images, contact angle, porosity measurements, determination of pure water fluxes, contamination resistance and desalination results. With the addition of zinc ferrite nanoparticles, improvements were observed in the porosity and hydrophilicity of the membranes, as a result of which a significant increase in pure water flux was obtained. While the pure water flux was realized as 1.5 L/m2h for PSf membrane, it was found as 4.5 L/m2h for the composite membrane containing 2.5% zinc ferrite with an increase of 54.9%. The desalination performance of the membranes was examined by using 1000 ppm Na2SO4 solution and the best performance was obtained on the composite membrane containing 0.1% zinc ferrite with 40.6% desalination. In addition, membrane fouling, which is considered to be an important problem in membrane applications, has been investigated using BSA solution. The variation of pure water fluxes before and after using BSA solution was investigated. The blended membranes with ZnFe2O4 exhibited higher FRR values than the 56% FRR value of the PSf membrane. This indicates that the addition of nanoparticles significantly improves the antifouling property of the membrane. In addition, reversible fouling ratio (Rr), irreversible fouling ratio (Rir) and total fouling (Rt) values were calculated to examine the fouling resistance of the membranes in more detail. It was found that the total fouling and irreversible fouling ratio of the membrane containing 2.5% zinc ferrite by weight were lower compared to the PSf membrane. In addition, the highest reversible contamination ratio was obtained. As a result, it has been seen that the addition of zinc ferrite nanoparticles to PSf membrane contributes to the improvement of its performance.

References

  • Agenson, K.O., & Urase, T. (2007). “Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications”, Separation and Purification Technology, 55(2), 147–156.
  • Ansari, S., Moghadassi, A.R., & Hosseini, S.M. (2015). “Fabrication of novel poly(phenylene ether ether sulfone) based nanocomposite membrane modified by Fe2NiO4 nanoparticles and ethanol as organic modifier”, Desalination, 357, 189–196.
  • Arumugham, T., Amimodu, R.G., Kaleekkal, N.J., & Rana, D. (2019). “Nano CuO/g-C3N4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application”, Journal of Environmental Sciences (China), 82, 57–69.
  • Ba-Abbad, M.M., Mohammad, A.W., Takriff, M.S., Rohani, R., Mahmoudi, E., Faneer, K.A., & Benamo, A. (2017). “Synthesis of iron oxide nanoparticles to enhance polysulfone ultrafiltration membrane performance for salt rejection”, Chemical Engineering Transactions, 56(1), 1699–1704.
  • Bidsorkhi, H.C., Riazi, H., Emadzadeh, D., Ghanbari, M., Matsuura, T., Lau, W.J., & Ismail, A.F. (2016). “Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane”, Nanotechnology, 27(41), 415706.
  • Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor, A., Johnson, D., & Hilal, N. (2017). “Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control”, Desalination, 402, 123–132.
  • Daraei, P., Madaeni, S. S., Ghaemi, N., Khadivi, M. A., Astinchap, B., & Moradian, R. (2013). “Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: Study of magnetic field induced casting”, Separation and Purification Technology, 109, 111–121.
  • Han, M. J., Baroña, G. N. B., & Jung, B. (2011). “Effect of surface charge on hydrophilically modified poly(vinylidene fluoride) membrane for microfiltration”, Desalination, 270(1–3), 76–83.
  • Hong, J., & He, Y. (2014). “Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning”, Desalination, 332(1), 67–75.
  • Hosseini, S. M., Amini, S. H., Khodabakhshi, A. R., Bagheripour, E., & Van der Bruggen, B. (2018). “Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water”, Journal of the Taiwan Institute of Chemical Engineers, 82, 169–178
  • Jalali, A., Shockravi, A., Vatanpour, V., & Hajibeygi, M. (2016). “Preparation and characterization of novel microporous ultrafiltration PES membranes using synthesized hydrophilic polysulfide-amide copolymer as an additive in the casting solution”, Microporous and Mesoporous Materials, 228, 1–13.
  • Koulivand, H., Shahbazi, A., & Vatanpour, V. (2019). “Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles”, Chemical Engineering Research and Design, 145, 64–75.
  • Luo, M. L., Zhao, J. Q., Tang, W., & Pu, C. S. (2005). “Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles”, Applied Surface Science, 249(1–4), 76–84.
  • Manohar, A., Krishnamoorthi, C., Naidu, K. C. B., & Pavithra, C. (2019). “Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method”, Applied Physics A: Materials Science and Processing, 125(7), 477.
  • Moradihamedani, P., Ibrahim, N. A., Ramimoghadam, D., Yunus, W. M. Z. W., & Yusof, N. A. (2014). “Polysulfone/zinc oxide nanoparticle mixed matrix membranes for CO2/CH4 separation”, Journal of Applied Polymer Science, 131(16).
  • Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N.M. (2018). “Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties”, Separation and Purification Technology, 192(October 2017), 369–382.
  • Oliveira, F.C.C., Rossi, L.M., Jardim, R.F., & Rubim, J. C. (2009). “Magnetic fluids based on γ-Fe2O3 and CoFe 2O4 nanoparticles dispersed in ionic liquids”, Journal of Physical Chemistry C, 113(20), 8566–8572.
  • Reddy, D.H.K., & Yun, Y.S. (2016). “Spinel ferrite magnetic adsorbents: Alternative future materials for water purification”, Coordination Chemistry Reviews, 315, 90–111.
  • Safarpour, M., Vatanpour, V., & Khataee, A. (2016). “Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance”, Desalination, 393, 65–78.
  • Semblante, G.U., Tampubolon, S.D.R., You, S.J., Lin, Y.F., Chang, T.C., & Yen, F.C. (2013). “Fouling reduction in membrane reactor through magnetic particles”, Journal of Membrane Science, 435, 62–70.
  • Seyyed Shahabi, S., Azizi, N., Vatanpour, V., & Yousefimehr, N. (2020). “Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination”, Separation and Purification Technology, 235, 116134.
  • Tyczkowski, J., Krawczyńska, M., & Kazimierski, P. (2007). “Modification of Poly(propylene) Membranes for Electrochemical Cells by Low-Temperature Plasma Treatment”, Plasma Processes and Polymers, 4(S1), S1086–S1090.
  • Vatanpour, V., Faghani, S., Keyikoglu, R., & Khataee, A. (2020). “Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite”, Carbohydrate Polymers, 11(7), 413.
  • Xie, T., Xu, L., Liu, C., & Wang, Y. (2013). “Magnetic composite ZnFe2O4 /SrFe12O19 : Preparation, characterization, and photocatalytic activity under visible light”, Applied Surface Science, 273, 684–691.
  • Yang, Z., Wan, Y., Xiong, G., Li, D., Li, Q., Ma, C., Luo, H. (2015). “Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties”, Materials Research Bulletin, 61, 292–297.
  • Yu, H. Y., Xu, Z. K., Yang, Q., Hu, M. X., & Wang, S. Y. (2006). “Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid”, Journal of Membrane Science, 281(1–2), 658–665.
  • Zareei, F., & Hosseini, S.M. (2019). “A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property”, Separation and Purification Technology, 226, 48–58.
  • Zhang, D., Karkooti, A., Liu, L., Sadrzadeh, M., Thundat, T., Liu, Y., & Narain, R. (2018). “Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes”, Journal of Membrane Science, 549, 350–356.
  • Zinadini, S., Rostami, S., Vatanpour, V., & Jalilian, E. (2017). “Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite”, Journal of Membrane Science, 529, 133–141.
  • Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014a). “Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates”, Journal of Membrane Science, 453, 292–301.
  • Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014b). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453, 292–301.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Abdullah Oğuz Can This is me 0000-0002-1527-1335

Emine Özkan This is me 0000-0001-7924-4304

Ahmet Özgür Saf 0000-0002-6401-5434

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 22

Cite

APA Can, A. O., Özkan, E., & Saf, A. Ö. (2021). Çinko Ferrit Nanopartikül ile Modifiye Edilmiş PSf Kompozit Membranların Hazırlanması ve Performanslarının Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(22), 159-166. https://doi.org/10.31590/ejosat.852822