Research Article
BibTex RIS Cite

Enhancement of Heat Transfer Performance for Fin-Tube Heat Exchangers Using Dimpled/Protruding Fin Surface

Year 2021, Issue: 23, 401 - 414, 30.04.2021
https://doi.org/10.31590/ejosat.874885

Abstract

In this study, effect of dimpled/protruding fin on heat transfer performance and flow characteristics for a fin-tube heat exchanger was numerically investigated. Circular dimple/protrusion and two different dimple/protrusion aspect ratio (a/b) such as 0.667 and 1.50 in a double row arrangement were investigated in order to obtain the most feasible dimple/protrusion design parameter. The diameter of the circular dimple is 2.8 mm. The cross-sectional area of the oval dimples is equal to the cross-sectional area of the circular dimples. Simulations were carried out in the laminar flow conditions at four Reynolds (Re) numbers including 500, 1000, 1500 and 2000. Numerical calculations were performed with Ansys Fluent 19.2 using RNG k-ε turbulence model. Average Nusselt number ((Nu) ̅), lateraly-averaged Nu number distributions on the surface, thermal performance factor (TPF) and flow characteristics were comprehensively investigated. Results were compared with the flat fin surface. Numerical results revealed that dimple/protrusion fin increases heat transfer up to 26.63% compared to the flat surface. However, it was determined that the most feasible design for enhancement heat transfer is circular dimpled/protruding fin design for the fin-tube heat exchangers according to TPF results. 

References

  • ANSYS Inc. (2018). ANSYS Fluent, Release 19.1, Help System, Theory Guide. In ANSYS FLUENT 19.1.
  • Caliskan, S. (2013). Flow and heat transfer characteristics of transverse perforated ribs under impingement jets. International Journal of Heat and Mass Transfer, 66(1), 244–260. doi: 10.1016/j.ijheatmasstransfer.2013.07.027
  • Carpio, J., & Valencia, A. (2020). Heat transfer enhancement through longitudinal vortex generators in compact heat exchangers with flat tubes. International Communications in Heat and Mass Transfer, xxxx, 105035. doi: 10.1016/j.icheatmasstransfer.2020.105035
  • Çengel, Y. A., & Ghajar, A. J. (2015). HEAT AND MASS TRANSFER FUNDAMENTALS & APPLICATIONS. New York: McGraw-Hill Education.
  • Chang, L. M., Wang, L. B., Song, K. W., Sun, D. L., & Fan, J. F. (2009). Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators. International Journal of Heat and Mass Transfer, 52(7–8), 1794–1801. doi: 10.1016/j.ijheatmasstransfer.2008.09.029
  • Chang, S. W., Chiang, P., & Cai, W. L. (2021). Thermal performance of impinging jet-row onto trapezoidal channel with different effusion and discharge conditions. International Journal of Thermal Sciences, 159(May 2020), 106590. doi: 10.1016/j.ijthermalsci.2020.106590
  • Chu, P., He, Y. L., Lei, Y. G., Tian, L. T., & Li, R. (2009). Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators. Applied Thermal Engineering, 29(5–6), 859–876. doi: 10.1016/j.applthermaleng.2008.04.021
  • Du, X., Feng, L., Li, L., Yang, L., & Yang, Y. (2014). Heat transfer enhancement of wavy finned flat tube by punched longitudinal vortex generators. International Journal of Heat and Mass Transfer, 75, 368–380. doi: 10.1016/j.ijheatmasstransfer.2014.03.081
  • Du, X., Feng, L., Yang, Y., & Yang, L. (2013). Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators. Applied Thermal Engineering, 50(1), 55–62. doi: 10.1016/j.applthermaleng.2012.05.024
  • Eiamsa-Ard, S., & Changcharoen, W. (2011). Analysis of turbulent heat transfer and fluid flow in channels with various ribbed internal surfaces. Journal of Thermal Science, 20(3), 260–267. doi: 10.1007/s11630-011-0468-3
  • Gentry, M. C., & Jacobi, A. M. (1997). Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions with the Boundary Layer. Experimental Thermal and Fluid Science, 14(3), 231–242. doi: 10.1016/S0894-1777(96)00067-2
  • He, Y. L., Han, H., Tao, W. Q., & Zhang, Y. W. (2012). Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 55(21–22), 5449–5458. doi: 10.1016/j.ijheatmasstransfer.2012.04.059
  • Huisseune, H., T’Joen, C., De Jaeger, P., Ameel, B., De Schampheleire, S., & De Paepe, M. (2013). Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. International Journal of Heat and Mass Transfer, 57(1), 58–72. doi: 10.1016/j.ijheatmasstransfer.2012.10.016
  • Huisseune, Henk, T’Joen, C., Jaeger, P. De, Ameel, B., Schampheleire, S. De, & Paepe, M. De. (2013). Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. International Journal of Heat and Mass Transfer, 56(1–2), 475–487. doi: 10.1016/j.ijheatmasstransfer.2012.09.004
  • Jing, Q., Zhang, D., & Xie, Y. (2018). Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. International Journal of Heat and Mass Transfer, 126(Part-A), 169–190. doi: 10.1016/j.ijheatmasstransfer.2018.05.009
  • Kumar, A., Joshi, J. B., & Nayak, A. K. (2017). A comparison of thermal-hydraulic performance of various fin patterns using 3D CFD simulations. International Journal of Heat and Mass Transfer, 109, 336–356. doi: 10.1016/j.ijheatmasstransfer.2017.01.102
  • Lemouedda, A., Schmid, A., Franz, E., Breuer, M., & Delgado, A. (2011). Numerical investigations for the optimization of serrated finned-tube heat exchangers. Applied Thermal Engineering, 31(8–9), 1393–1401. doi: 10.1016/j.applthermaleng.2010.12.035
  • Li, J., Wang, S., Chen, J., & Lei, Y. G. (2011). Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators. International Journal of Heat and Mass Transfer, 54(9–10), 1743–1751. doi: 10.1016/j.ijheatmasstransfer.2011.01.017
  • Li, M. J., Zhou, W. J., Zhang, J. F., Fan, J. F., He, Y. L., & Tao, W. Q. (2014). Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface. International Journal of Heat and Mass Transfer, 70, 734–744. doi: 10.1016/j.ijheatmasstransfer.2013.11.024
  • Lin, C. N., Liu, Y. W., & Leu, J. S. (2008). Heat transfer and fluid flow analysis for plate-fin and oval tube heat exchangers with vortex generators. Heat Transfer Engineering, 29(7), 588–596. doi: 10.1080/01457630801922279
  • Lin, Z. M., Liu, C. P., Lin, M., & Wang, L. B. (2015). Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved delta-winglet vortex generators. Applied Thermal Engineering, 88, 198–210. doi: 10.1016/j.applthermaleng.2014.11.079
  • Maradiya, C., Vadher, J., & Agarwal, R. (2018). The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 1–21. doi: 10.1016/j.bjbas.2017.10.001
  • Modi, A. J., Kalel, N. A., & Rathod, M. K. (2020). Thermal performance augmentation of fin-and-tube heat exchanger using rectangular winglet vortex generators having circular punched holes. In International Journal of Heat and Mass Transfer (Vol. 158). doi: 10.1016/j.ijheatmasstransfer.2020.119724
  • Moreno, R. R., Pérez, A. M., & Pérez, R. B. (2020). Numerical optimization of a heat exchanger with slit fins and vortex generators using genetic algorithms. In International Journal of Refrigeration (Vol. 119, pp. 247–256). doi: 10.1016/j.ijrefrig.2020.07.023
  • Rao, Y., Wan, C., & Xu, Y. (2012). An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths. In International Journal of Heat and Mass Transfer (Vol. 55, Issues 23–24, pp. 6723–6733). doi: 10.1016/j.ijheatmasstransfer.2012.06.081
  • Singh, P., & Ekkad, S. (2016). Effects of Rotation on Heat Transfer due to Jet Impingement on Cylindrical Dimpled Target Surface. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 49798, V05BT16A010. Retrieved from http://dx.doi.org/10.1115/GT2016-57145
  • Sinha, A., Chattopadhyay, H., Iyengar, A. K., & Biswas, G. (2016). Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators. International Journal of Heat and Mass Transfer, 101, 667–681. doi: 10.1016/j.ijheatmasstransfer.2016.05.032
  • Skullong, S., Thianpong, C., Jayranaiwachira, N., & Promvonge, P. (2016). Experimental and numerical heat transfer investigation in turbulent square-duct flow through oblique horseshoe baffles. Chemical Engineering and Processing: Process Intensification, 99, 58–71. doi: 10.1016/j.cep.2015.11.008
  • Tepe, A. Ü. (2021). Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface. International Journal of Thermal Sciences, 162(December 2020), 106792. doi: 10.1016/j.ijthermalsci.2020.106792
  • Tiwari, S., Maurya, D., Biswas, G., & Eswaran, V. (2003). Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets. International Journal of Heat and Mass Transfer, 46(15), 2841–2856. doi: 10.1016/S0017-9310(03)00047-4
  • Wan, C., Rao, Y., & Chen, P. (2015). Numerical predictions of jet impingement heat transfer on square pin-fin roughened plates. Applied Thermal Engineering, 80(1), 301–309. doi: 10.1016/j.applthermaleng.2015.01.053
  • Wang, S., Guo, Z. Y., & Li, Z. X. (2001). Heat transfer enhancement by using metallic filament insert in channel flow. International Journal of Heat and Mass Transfer. doi: 10.1016/S0017-9310(00)00173-3
  • Wu, H., Ting, D. S. K., & Ray, S. (2018). The effect of delta winglet attack angle on the heat transfer performance of a flat surface. International Journal of Heat and Mass Transfer, 120, 117–126. doi: 10.1016/j.ijheatmasstransfer.2017.12.030
  • Xie, G., & Sundén, B. (2010). Numerical predictions of augmented heat transfer of an internal blade tip-wall by hemispherical dimples. In International Journal of Heat and Mass Transfer (Vol. 53, Issues 25–26, pp. 5639–5650). doi: 10.1016/j.ijheatmasstransfer.2010.08.019
  • Xie, J., & Lee, H. M. (2020). Flow and heat transfer performances of directly printed curved-rectangular vortex generators in a compact fin-tube heat exchanger. Applied Thermal Engineering, 180(July). doi: 10.1016/j.applthermaleng.2020.115830
  • Xie, Y., Qu, H., & Zhang, D. (2015). Numerical investigation of flow and heat transfer in rectangular channel with teardrop dimple/protrusion. In International Journal of Heat and Mass Transfer (Vol. 84, pp. 486–496). doi: 10.1016/j.ijheatmasstransfer.2015.01.055
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A. doi: 10.1063/1.858424
  • Yang, Y., Ting, D. S. K., & Ray, S. (2020). Heat transfer enhancement of a heated flat surface via a flexible strip pair. International Journal of Heat and Mass Transfer, 159. doi: 10.1016/j.ijheatmasstransfer.2020.120139

Kanatlı-Borulu Isı Değiştiricilerinde Çukurlu/Çıkıntılı Kanat ile Isı Transfer Performansının Arttırılması

Year 2021, Issue: 23, 401 - 414, 30.04.2021
https://doi.org/10.31590/ejosat.874885

Abstract

Bu çalışmada kanatlı-borulu ısı değiştiricisinde çukurlu/çıkıntılı kanatın ısı transfer performansına ve akış karakteristiklerine etkisi sayısal olarak incelenmiştir. En uygun tasarım parametresini belirlemek için kanat üzerine dairesel ve 0,667 ile 1,50 olmak üzere iki farklı ovallik oranlı (a/b) çukurlar çift sıralı olarak yerleştirilerek ısı transfer performansına etkisinin araştırılmıştır. Dairesel çukurun çapı 2,8 mm olarak belirlenmiştir. Oval çukurların kesit alanı ise dairesel çukurla eşit tutulmuştur. Hesaplamalar 500, 1000, 1500 ve 2000 olmak üzere 4 farklı Reynold (Re) sayısında laminar akış rejiminde yapılmıştır. Sayısal hesaplamalar Ansys Fluent ile RNG k-ε türbülans modeli kullanılarak gerçekleştirilmiştir. Ortalama Nusselt sayısı ((Nu) ̅), yüzey üzerinde yanal ortalamalı Nu sayısı dağılımları, termal performans faktörü (TPF) ve akış karakteristikleri ayrıntılı olarak incelenmiştir. Sonuçlar çukur olmayan düz yüzeyli kanatçık ile karşılaştırılmıştır. Sayısal sonuçlar, yüzey üzerine yerleştirilen çukurların/çıkıntıların düz yüzeye göre ısı transferini %26,63’e kadar arttıracağını ortaya koymuştur. Bununla birlikte, TPF incelendiğinde ısı transferi artışında en uygun tasarımın dairesel çukurlu/çıkıntılı kanat tasarımının olduğu tespit edilmiştir.

References

  • ANSYS Inc. (2018). ANSYS Fluent, Release 19.1, Help System, Theory Guide. In ANSYS FLUENT 19.1.
  • Caliskan, S. (2013). Flow and heat transfer characteristics of transverse perforated ribs under impingement jets. International Journal of Heat and Mass Transfer, 66(1), 244–260. doi: 10.1016/j.ijheatmasstransfer.2013.07.027
  • Carpio, J., & Valencia, A. (2020). Heat transfer enhancement through longitudinal vortex generators in compact heat exchangers with flat tubes. International Communications in Heat and Mass Transfer, xxxx, 105035. doi: 10.1016/j.icheatmasstransfer.2020.105035
  • Çengel, Y. A., & Ghajar, A. J. (2015). HEAT AND MASS TRANSFER FUNDAMENTALS & APPLICATIONS. New York: McGraw-Hill Education.
  • Chang, L. M., Wang, L. B., Song, K. W., Sun, D. L., & Fan, J. F. (2009). Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators. International Journal of Heat and Mass Transfer, 52(7–8), 1794–1801. doi: 10.1016/j.ijheatmasstransfer.2008.09.029
  • Chang, S. W., Chiang, P., & Cai, W. L. (2021). Thermal performance of impinging jet-row onto trapezoidal channel with different effusion and discharge conditions. International Journal of Thermal Sciences, 159(May 2020), 106590. doi: 10.1016/j.ijthermalsci.2020.106590
  • Chu, P., He, Y. L., Lei, Y. G., Tian, L. T., & Li, R. (2009). Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators. Applied Thermal Engineering, 29(5–6), 859–876. doi: 10.1016/j.applthermaleng.2008.04.021
  • Du, X., Feng, L., Li, L., Yang, L., & Yang, Y. (2014). Heat transfer enhancement of wavy finned flat tube by punched longitudinal vortex generators. International Journal of Heat and Mass Transfer, 75, 368–380. doi: 10.1016/j.ijheatmasstransfer.2014.03.081
  • Du, X., Feng, L., Yang, Y., & Yang, L. (2013). Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators. Applied Thermal Engineering, 50(1), 55–62. doi: 10.1016/j.applthermaleng.2012.05.024
  • Eiamsa-Ard, S., & Changcharoen, W. (2011). Analysis of turbulent heat transfer and fluid flow in channels with various ribbed internal surfaces. Journal of Thermal Science, 20(3), 260–267. doi: 10.1007/s11630-011-0468-3
  • Gentry, M. C., & Jacobi, A. M. (1997). Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions with the Boundary Layer. Experimental Thermal and Fluid Science, 14(3), 231–242. doi: 10.1016/S0894-1777(96)00067-2
  • He, Y. L., Han, H., Tao, W. Q., & Zhang, Y. W. (2012). Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 55(21–22), 5449–5458. doi: 10.1016/j.ijheatmasstransfer.2012.04.059
  • Huisseune, H., T’Joen, C., De Jaeger, P., Ameel, B., De Schampheleire, S., & De Paepe, M. (2013). Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. International Journal of Heat and Mass Transfer, 57(1), 58–72. doi: 10.1016/j.ijheatmasstransfer.2012.10.016
  • Huisseune, Henk, T’Joen, C., Jaeger, P. De, Ameel, B., Schampheleire, S. De, & Paepe, M. De. (2013). Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. International Journal of Heat and Mass Transfer, 56(1–2), 475–487. doi: 10.1016/j.ijheatmasstransfer.2012.09.004
  • Jing, Q., Zhang, D., & Xie, Y. (2018). Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. International Journal of Heat and Mass Transfer, 126(Part-A), 169–190. doi: 10.1016/j.ijheatmasstransfer.2018.05.009
  • Kumar, A., Joshi, J. B., & Nayak, A. K. (2017). A comparison of thermal-hydraulic performance of various fin patterns using 3D CFD simulations. International Journal of Heat and Mass Transfer, 109, 336–356. doi: 10.1016/j.ijheatmasstransfer.2017.01.102
  • Lemouedda, A., Schmid, A., Franz, E., Breuer, M., & Delgado, A. (2011). Numerical investigations for the optimization of serrated finned-tube heat exchangers. Applied Thermal Engineering, 31(8–9), 1393–1401. doi: 10.1016/j.applthermaleng.2010.12.035
  • Li, J., Wang, S., Chen, J., & Lei, Y. G. (2011). Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators. International Journal of Heat and Mass Transfer, 54(9–10), 1743–1751. doi: 10.1016/j.ijheatmasstransfer.2011.01.017
  • Li, M. J., Zhou, W. J., Zhang, J. F., Fan, J. F., He, Y. L., & Tao, W. Q. (2014). Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface. International Journal of Heat and Mass Transfer, 70, 734–744. doi: 10.1016/j.ijheatmasstransfer.2013.11.024
  • Lin, C. N., Liu, Y. W., & Leu, J. S. (2008). Heat transfer and fluid flow analysis for plate-fin and oval tube heat exchangers with vortex generators. Heat Transfer Engineering, 29(7), 588–596. doi: 10.1080/01457630801922279
  • Lin, Z. M., Liu, C. P., Lin, M., & Wang, L. B. (2015). Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved delta-winglet vortex generators. Applied Thermal Engineering, 88, 198–210. doi: 10.1016/j.applthermaleng.2014.11.079
  • Maradiya, C., Vadher, J., & Agarwal, R. (2018). The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 1–21. doi: 10.1016/j.bjbas.2017.10.001
  • Modi, A. J., Kalel, N. A., & Rathod, M. K. (2020). Thermal performance augmentation of fin-and-tube heat exchanger using rectangular winglet vortex generators having circular punched holes. In International Journal of Heat and Mass Transfer (Vol. 158). doi: 10.1016/j.ijheatmasstransfer.2020.119724
  • Moreno, R. R., Pérez, A. M., & Pérez, R. B. (2020). Numerical optimization of a heat exchanger with slit fins and vortex generators using genetic algorithms. In International Journal of Refrigeration (Vol. 119, pp. 247–256). doi: 10.1016/j.ijrefrig.2020.07.023
  • Rao, Y., Wan, C., & Xu, Y. (2012). An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths. In International Journal of Heat and Mass Transfer (Vol. 55, Issues 23–24, pp. 6723–6733). doi: 10.1016/j.ijheatmasstransfer.2012.06.081
  • Singh, P., & Ekkad, S. (2016). Effects of Rotation on Heat Transfer due to Jet Impingement on Cylindrical Dimpled Target Surface. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 49798, V05BT16A010. Retrieved from http://dx.doi.org/10.1115/GT2016-57145
  • Sinha, A., Chattopadhyay, H., Iyengar, A. K., & Biswas, G. (2016). Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators. International Journal of Heat and Mass Transfer, 101, 667–681. doi: 10.1016/j.ijheatmasstransfer.2016.05.032
  • Skullong, S., Thianpong, C., Jayranaiwachira, N., & Promvonge, P. (2016). Experimental and numerical heat transfer investigation in turbulent square-duct flow through oblique horseshoe baffles. Chemical Engineering and Processing: Process Intensification, 99, 58–71. doi: 10.1016/j.cep.2015.11.008
  • Tepe, A. Ü. (2021). Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface. International Journal of Thermal Sciences, 162(December 2020), 106792. doi: 10.1016/j.ijthermalsci.2020.106792
  • Tiwari, S., Maurya, D., Biswas, G., & Eswaran, V. (2003). Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets. International Journal of Heat and Mass Transfer, 46(15), 2841–2856. doi: 10.1016/S0017-9310(03)00047-4
  • Wan, C., Rao, Y., & Chen, P. (2015). Numerical predictions of jet impingement heat transfer on square pin-fin roughened plates. Applied Thermal Engineering, 80(1), 301–309. doi: 10.1016/j.applthermaleng.2015.01.053
  • Wang, S., Guo, Z. Y., & Li, Z. X. (2001). Heat transfer enhancement by using metallic filament insert in channel flow. International Journal of Heat and Mass Transfer. doi: 10.1016/S0017-9310(00)00173-3
  • Wu, H., Ting, D. S. K., & Ray, S. (2018). The effect of delta winglet attack angle on the heat transfer performance of a flat surface. International Journal of Heat and Mass Transfer, 120, 117–126. doi: 10.1016/j.ijheatmasstransfer.2017.12.030
  • Xie, G., & Sundén, B. (2010). Numerical predictions of augmented heat transfer of an internal blade tip-wall by hemispherical dimples. In International Journal of Heat and Mass Transfer (Vol. 53, Issues 25–26, pp. 5639–5650). doi: 10.1016/j.ijheatmasstransfer.2010.08.019
  • Xie, J., & Lee, H. M. (2020). Flow and heat transfer performances of directly printed curved-rectangular vortex generators in a compact fin-tube heat exchanger. Applied Thermal Engineering, 180(July). doi: 10.1016/j.applthermaleng.2020.115830
  • Xie, Y., Qu, H., & Zhang, D. (2015). Numerical investigation of flow and heat transfer in rectangular channel with teardrop dimple/protrusion. In International Journal of Heat and Mass Transfer (Vol. 84, pp. 486–496). doi: 10.1016/j.ijheatmasstransfer.2015.01.055
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A. doi: 10.1063/1.858424
  • Yang, Y., Ting, D. S. K., & Ray, S. (2020). Heat transfer enhancement of a heated flat surface via a flexible strip pair. International Journal of Heat and Mass Transfer, 159. doi: 10.1016/j.ijheatmasstransfer.2020.120139
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Ümit Tepe 0000-0001-7626-6348

Publication Date April 30, 2021
Published in Issue Year 2021 Issue: 23

Cite

APA Tepe, A. Ü. (2021). Kanatlı-Borulu Isı Değiştiricilerinde Çukurlu/Çıkıntılı Kanat ile Isı Transfer Performansının Arttırılması. Avrupa Bilim Ve Teknoloji Dergisi(23), 401-414. https://doi.org/10.31590/ejosat.874885