Süperiletken Manyetik Yataklı Doğrusal Fırlatıcı Sistemi için H-Formülü Yöntemi ile Manyetik Ray Konfigürasyonu Tasarımı
Year 2021,
Issue: 23, 742 - 749, 30.04.2021
Sinan Başaran
,
Mutlu Altınkılıç
,
Ali Suat Yıldız
Abstract
Süperiletken malzemeler kullanılarak oluşturulan sistemlerde deneysel yapının kurulmasından önce sitemin harektine bağlı levitasyon kuvveti gibi spesifik karakteristiklerini gözlemlemek ve tasarımı şekillendirmek için çeşitli analitik yaklaşımlar kullanılmaktadır. Maxwell denklemleri üzerinden elde edilen bu analitik yaklaşımlar ile kalıcı mıknatıs ve süperiletken malzeme arasındaki etkileşimi modelleme mümkün olmaktadır. Bu çalışmada manyetik alanın analitik olarak modellenmesini sağlayan H-formülasyonu yöntemi ile süperiletken manyetik yataklı doğrusal fırlatıcı sistemi için manyetik ray konfigürasyonu sunulmuştur. Bu çalışmada ele alınan sistemde insansız hava araçları için fırlatıcı olarak kullanılabilecek yapıya sahip doğrusal bir ivmelendirici sisteminin yataklanmasının süperiletken manyetik yataklar yardımı ile temassız bir şekilde gerçekleştirilmesi hedeflenmiştir. Dolayısı süperiletken ve manyetik ray arası etkileşimin incelenmesi ve levitasyon kuvvetlerinin hesaplanması gerekmektedir.
Supporting Institution
Tübitak
Thanks
Bu çalışma 119M131 proje numaralı, Tübitak 3501 Kariyer destek programı kapsamında yapılmıştır. Yazarlar katkılarından dolayı Tübitak’a teşekkürlerini sunarlar.
References
- Basaran, S., ve Sivrioglu, S. (2017). Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation. Superconductor Science and Technology, 30(3). IOP Publishing.
- Drozdov, A. P., Kong, P. P., Minkov, V. S., Besedin, S. P., Kuzovnikov, M. A., Mozaffari, S., Balicas, L., vd. (2019). Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569(7757), ss. 528–531. https://doi.org/10.1038/s41586-019-1201-8 .
- Fahlstrom, P. G., ve Gleason, T. J. (2012). Introduction to UAV Systems: Fourth Edition. Introduction to UAV Systems: Fourth Edition.
- Floegel-Delor, U., Schirrmeister, P., Riedel, T., Koenig, R., Kantarbar, V., ve Werfel, F. N. (2018). Bulk Superconductor Levitation Devices: Advances in and Prospects for Development. IEEE Transactions on Applied Superconductivity, 28(4), ss. 1–5.
- Kondratiuk, M., ve Ambroziak, L. (2016). Concept of the magnetic launcher for medium class unmanned aerial vehicles designed on the basis of numerical calculations. Journal of Theoretical and Applied Mechanics, 54(1), ss. 163–177.
- Kozdraś, E. Ł., ve Sibilska-mroziewicz, A. (2017). Analysis of the Levitation Forces Generated by High-Temperature Superconductors Located within the Magnetic Field of a UAV Catapult System, 3(29), ss. 87–94.
- Novaković, Z., ve Medar, N. (2013). Analysis of a UAV Bungee Cord Launching Device. Scientific Technical Review, 63(3), ss. 41–47.
- Ozturk, K., Abdioglu, M., ve Karaahmet, Z. (2020). Magnetic force and stiffness performances of Maglev system based on multi–surface arrangements with three-seeded bulk YBaCuO superconductors. Physica C: Superconductivity and its Applications, 578(July), s. 1353739. Elsevier. https://doi.org/10.1016/j.physc.2020.1353739.
- Ozturk, K., Guner, S. B., Abdioglu, M., Demirci, M., Celik, S., ve Cansiz, A. (2019). An analysis on the relation between the seed distance and vertical levitation force for the multi−seeded YBCO using the modified advanced frozen image (MAFI) and experimental methods. Journal of Alloys and Compounds, 805, ss. 1208–1216. Elsevier B.V. https://doi.org/10.1016/j.jallcom.2019.07.205.
- Reck, B. (2003). First design study of an electrical catapult for unmanned air vehicles in the several hundred kilogram range. IEEE Transactions on Magnetics, 39(1), ss. 310–313.
- Sass, F., Sotelo, G. G., De Andrade, R., ve Sirois, F. (2015). H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors. Superconductor Science and Technology, 28(12). IOP Publishing.
- Sivrioglu, S., Basaran, S., ve Yildiz, A. S. (2016). Multisurface HTS-PM Levitation for a Flywheel System. IEEE Transactions on Applied Superconductivity, 26(8). IEEE.
- Yang, Y., ve Zheng, X. (2007). Method for solution of the interaction between superconductor and permanent magnet. Journal of Applied Physics, 101(11).
Magnetic Rail Configuration Design with H-Formulation Method for Superconducting Magnetic Bearing Linear Launcher System
Year 2021,
Issue: 23, 742 - 749, 30.04.2021
Sinan Başaran
,
Mutlu Altınkılıç
,
Ali Suat Yıldız
Abstract
Various analytical approaches have been used in the superconducting levitation system before the experimental application stage to observe specifical behavior such as displacement depending on force characteristic. The interaction between the permanent magnet and superconducting material can be modelled with these analytical approaches derived from Maxwell's equations. In this study, the H-formulation method that uses an analytic form of the magnetic field is presented for the magnetic rail configuration of a superconducting magnetic bearing linear launcher system. The system addressed in this study is aimed to realize the contactless bearing of a linear accelerator system that can be used as a launcher for unmanned aerial vehicles including a superconducting magnetic bearing. Therefore, the interaction between the superconductor and magnetic rail should be examined and also resulting force characteristics should be derived.
References
- Basaran, S., ve Sivrioglu, S. (2017). Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation. Superconductor Science and Technology, 30(3). IOP Publishing.
- Drozdov, A. P., Kong, P. P., Minkov, V. S., Besedin, S. P., Kuzovnikov, M. A., Mozaffari, S., Balicas, L., vd. (2019). Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569(7757), ss. 528–531. https://doi.org/10.1038/s41586-019-1201-8 .
- Fahlstrom, P. G., ve Gleason, T. J. (2012). Introduction to UAV Systems: Fourth Edition. Introduction to UAV Systems: Fourth Edition.
- Floegel-Delor, U., Schirrmeister, P., Riedel, T., Koenig, R., Kantarbar, V., ve Werfel, F. N. (2018). Bulk Superconductor Levitation Devices: Advances in and Prospects for Development. IEEE Transactions on Applied Superconductivity, 28(4), ss. 1–5.
- Kondratiuk, M., ve Ambroziak, L. (2016). Concept of the magnetic launcher for medium class unmanned aerial vehicles designed on the basis of numerical calculations. Journal of Theoretical and Applied Mechanics, 54(1), ss. 163–177.
- Kozdraś, E. Ł., ve Sibilska-mroziewicz, A. (2017). Analysis of the Levitation Forces Generated by High-Temperature Superconductors Located within the Magnetic Field of a UAV Catapult System, 3(29), ss. 87–94.
- Novaković, Z., ve Medar, N. (2013). Analysis of a UAV Bungee Cord Launching Device. Scientific Technical Review, 63(3), ss. 41–47.
- Ozturk, K., Abdioglu, M., ve Karaahmet, Z. (2020). Magnetic force and stiffness performances of Maglev system based on multi–surface arrangements with three-seeded bulk YBaCuO superconductors. Physica C: Superconductivity and its Applications, 578(July), s. 1353739. Elsevier. https://doi.org/10.1016/j.physc.2020.1353739.
- Ozturk, K., Guner, S. B., Abdioglu, M., Demirci, M., Celik, S., ve Cansiz, A. (2019). An analysis on the relation between the seed distance and vertical levitation force for the multi−seeded YBCO using the modified advanced frozen image (MAFI) and experimental methods. Journal of Alloys and Compounds, 805, ss. 1208–1216. Elsevier B.V. https://doi.org/10.1016/j.jallcom.2019.07.205.
- Reck, B. (2003). First design study of an electrical catapult for unmanned air vehicles in the several hundred kilogram range. IEEE Transactions on Magnetics, 39(1), ss. 310–313.
- Sass, F., Sotelo, G. G., De Andrade, R., ve Sirois, F. (2015). H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors. Superconductor Science and Technology, 28(12). IOP Publishing.
- Sivrioglu, S., Basaran, S., ve Yildiz, A. S. (2016). Multisurface HTS-PM Levitation for a Flywheel System. IEEE Transactions on Applied Superconductivity, 26(8). IEEE.
- Yang, Y., ve Zheng, X. (2007). Method for solution of the interaction between superconductor and permanent magnet. Journal of Applied Physics, 101(11).