Year 2021, Volume , Issue 23, Pages 601 - 607 2021-04-30

Katalitik Ozonlanmanın Doğal Organik Maddenin Yapısına ve Trihalometan Oluşturma Potansiyeline Etkisi
The Effect of Catalytic Ozonation on the Natural Organic Matter Structure and Trihalomethane Formation Potential

Alper ALVER [1] , Ahmet KILIÇ [2]


Konvansiyonel arıtma prosesleri ile yeterli oranda giderilemeyen sucul ortamdaki doğal organik maddenin (DOM) dezenfeksiyon/oksidasyon amacıyla kullanılan klorla reaksiyona girmesi sonucunda oksidasyon yan ürünleri (OYÜ) oluşmaktadır. DOM ile ozon arasındaki reaksiyonlar doğal organik maddenin alifatikliği ve aromatikliği gibi fiziko kimyasal özelliklerine bağlıdır. Bu çalışmada yüzey su kaynaklarındaki doğal organik maddeleri temsil eden humik asit çözeltilerinin katalitik ozonlanması sonucunda oluşan oksidasyon yan ürünlerinden trihalometanlar gaz kromatografi kütle dedektörü vasıtasıyla kalitatif olarak tespit edilmiş ve okside olmuş organik maddelerin yapısal değişimi takip edilmiştir. 10 mg/L doğal organik maddenin nötral pH seviyelerinde 10 mg/L çözünmüş ozon ile birlikte 0,050 g/L katalizör kullanımında 15 dk. sonunda ÇOK, UV220, UV254, UV272 ve TTHM’de sırasıyla %76,00, %32,48, %21,32, %3,49 ve %52-62 değişim meydana getirdiği belirlenmiştir. Sonuç olarak katalitik ozonlamanın doğal organik maddenin bağ yapsını bozarak aromatiğini alifatiğe dönüştürdüğü ve bir kısmını son ürüne okside ederek dezenfeksiyon yan ürünü oluşumunu azalttığı tespit edilmiştir.
Oxidation by-products (OBP) are formed as a result of the reaction of natural organic matter (NOM) in the aquatic environment, which cannot be removed sufficiently by conventional treatment processes, with chlorine used for disinfection/oxidation. The reactions between NOM and ozone depend on the physicochemical properties of the natural organic matter, such as aliphaticity and aromaticity. In this study, trihalomethanes, which are formed as a result of catalytic ozonation of humic acid solutions representing natural organic substances in surface water resources, were qualitatively determined by gas chromatography-mass detector and the structural change of oxidized organic substances was followed. At neutral pH levels of 10 mg / L natural organic matter, 10 mg / L dissolved ozone and 0.050 g / L catalyst use for 15 minutes. In the end, it was determined that it caused a change of 76.00%, 32.48%, 21.32%, 3.49%, and 52-62% in DOC, UV220, UV254, UV272, and TTHM, respectively. As a result, it has been determined that catalytic ozonation transforms its aromatics into aliphatic by disrupting the bond structure of natural organic matter and reduces the formation of disinfection by-products by oxidizing some of it to the final product.
  • Alver, A., Baştürk, E., Kılıç, A. (2020). Development of adaptive neuro-fuzzy inference system model for predict trihalomethane formation potential in distribution network simulation test. Environmental Science and Pollution Research, 1-13.
  • Alver, A., Karaarslan, M., Kılıç, A. (2016). The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2. Environmental technology, 37(16), 2040-2047.
  • Bakanlığı, T. C. S. (2012). İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik. (TSE-266). Ankara: T.C. Cumhurbaşkanlığı Brezinski, K., Gorczyca, B. (2019). An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications. Chemosphere, 217, 122-139.
  • Chi-Wang, L., Korshin, G. V., Benjamin, M. M. (1998). Monitoring DBP formation with differential UV spectroscopy. American Water Works Association. Journal, 90(8), 88.
  • Daifullah, A., Girgis, B., Gad, H. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235(1), 1-10.
  • Davies, J.-M., Mazumder, A. (2003). Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources. Journal of Environmental Management, 68(3), 273-286.
  • Gümüş, D., Akbal, F. (2017). Catalytic Ozonation for The Removal of Humic Acid in Water with Iron Coated Zeolite (ICZ). Nevşehir Bilim ve Teknoloji Dergisi, 6, 424-430.
  • Hayward, K. (1998). Drinking water contaminant hit-list for US EPA. Water, 21(4).
  • Hong, H., Xiong, Y., Ruan, M., Liao, F., Lin, H., Liang, Y. (2013). Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine. Science of the Total Environment, 444, 196-204.
  • Hong, S., Elimelech, M. (1997). Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of membrane science, 132(2), 159-181.
  • International, A. (2004). Annual book of ASTM standards. ASTM International.
  • Kim, H.-C., Yu, M.-J., Han, I. (2006). Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea. Applied geochemistry, 21(7), 1226-1239.
  • Kim, J. K., Alajmy, J., Borges, A. C., Joo, J. C., Ahn, H., Campos, L. C. (2013). Degradation of humic acid by photocatalytic reaction using nano-sized ZnO/laponite composite (NZLC). Water, Air, & Soil Pollution, 224(11), 1-10.
  • Lai, C., Chen, C.-Y. (2001). Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere, 44(5), 1177-1184.
  • Lai, C., Lo, S., Chiang, H. (2000). Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses. Chemosphere, 41(8), 1249-1255.
  • Li, C., Wang, D., Li, N., Luo, Q., Xu, X., Wang, Z. (2016). Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and in silico toxicity assessment. Chemosphere, 163, 535-543.
  • Li, C., Wang, D., Xu, X., Wang, Z. (2017). Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation. Science of the Total Environment, 587, 177-184.
  • Maurice, P. A., Pullin, M. J., Cabaniss, S. E., Zhou, Q., Namjesnik-Dejanovic, K., Aiken, G. R. (2002). A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates. Water Research, 36(9), 2357-2371.
  • Miao, H., Tao, W., Cui, F., Xu, Z., Ao, Z. (2008). Kinetic study of humic acid ozonation in aqueous media. CLEAN–Soil, Air, Water, 36(10‐11), 893-899.
  • Pirgalıoğlu, S., Özbelge, T. A. (2009). Comparison of non-catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Applied Catalysis A: General, 363(1), 157-163.
  • Qi, W., Zhang, H., Hu, C., Liu, H., Qu, J. (2018). Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation. Science of the Total Environment, 610, 1057-1064. Rice, E. W., Baird, R. B., Eaton, A. D., Clesceri, L. (2012). Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.
  • Sadrnourmohammadi, M., Brezinski, K., Gorczyca, B. (2020). Ozonation of natural organic matter and aquatic humic substances: the effects of ozone on the structural characteristics and subsequent trihalomethane formation potential. Water Quality Research Journal, 55(2), 155-166.
  • Świetlik, J., Dąbrowska, A., Raczyk-Stanisławiak, U., Nawrocki, J. (2004). Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research, 38(3), 547-558.
  • Westerhoff, P., Aiken, G., Amy, G., Debroux, J. (1999). Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Research, 33(10), 2265-2276.
  • Westerhoff, P., Debroux, J., Aiken, G., Amy, G. (1999). Ozone‐induced changes in natural organic matter (nom) structure. Ozone: science & engineering, 21(6), 551-570.
  • Yang, H., Wu, X., Su, L., Ma, Y., Graham, N. J., Yu, W. (2020). The Fe–N–C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water. Water research, 171, 115491.
  • Yuan, L., Shen, J., Chen, Z., Liu, Y. (2012). Pumice-catalyzed ozonation degradation of p-chloronitrobenzene in aqueous solution. Applied Catalysis B: Environmental, 117, 414-419.
  • Zouboulis, A. I., Jun, W., Katsoyiannis, I. A. (2003). Removal of humic acids by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 231(1), 181-193.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0003-2734-8544
Author: Alper ALVER (Primary Author)
Institution: Aksaray Üniversitesi, Teknik Bilimler Meslek Yüksekokulu, Çevre Koruma Teknolojileri Bölümü
Country: Turkey


Orcid: 0000-0002-2365-3093
Author: Ahmet KILIÇ
Institution: AKSARAY ÜNİVERSİTESİ
Country: Turkey


Supporting Institution Aksaray Üniversitesi BAP Koordinasyon Birimi
Project Number 2015-050
Thanks Desteklerinden ötürü Aksaray Üniversitesi BAP Koordinasyon Birimi’ne teşekkür ederiz.
Dates

Publication Date : April 30, 2021

APA Alver, A , Kılıç, A . (2021). Katalitik Ozonlanmanın Doğal Organik Maddenin Yapısına ve Trihalometan Oluşturma Potansiyeline Etkisi . Avrupa Bilim ve Teknoloji Dergisi , (23) , 601-607 . DOI: 10.31590/ejosat.888867