Conference Paper
BibTex RIS Cite

Hafif Elektrikli Araçlar için Asenkron Motor Tasarımı ve Uygulaması

Year 2021, Issue: 26 - Ejosat Special Issue 2021 (HORA), 228 - 233, 31.07.2021
https://doi.org/10.31590/ejosat.949092

Abstract

Hafif elektrikli araçlarda kullanılacak asenkron tahrik motorlarının (ATM) hız, moment ve güç değerleri, kullanımının amaçlandığı bölgedeki sürüş çevrimine bağlı olarak kalkış ve fren yapma sayısı, hız limiti, ivme ihtiyacı, toplam araç ağırlığı gibi birçok parametreye bağlı olarak değişmektedir. Fakat endüstriyel tip sincap kafesli asenkron motorlar sürekli çalışma rejiminde ve anma şartlarında şebekeden çalışmaya uygun olarak tasarlanırlar ve elektrikli araçlar için kullanılacak asenkron tahrik motorlarından tasarım ve performans isterleri bakımından önemli ölçüde ayrışırlar. Bu çalışma, hafif elektrikli araçlarda kullanılmak üzere özelleştirilmiş, 48V DC batarya gerilimine sahip, 3,5kW gücünde ve S2-60dk çalışma rejiminde çalışabilecek bir ATM’nin tasarımını, sonlu eleman analizlerini (SEA), performans çıktılarını, prototip üretimi gerçekleştirilen motorun test sonuçlarını ve tasarım sonuçları ile karşılaştırmasını sunmaktadır. Çalışmada ihtiyaç duyulan motor özelliklerine yönelik temel boyutlandırma eşitlikleri, tasarlanan asenkron motorun fiziksel ölçüleri, stator ve rotor oluk ölçüleri, sarım özellikleri ve performans değerleri verilmiştir. Tasarımı gerçekleştirilen motor öncelikle SEA analizlerine tabi tutularak farklı çalışma koşullarındaki akı dağılımları ve akım yoğunlukları verilmiştir. Üretimi gerçekleştirilen prototip asenkron tahrik motoru sekiz farklı hız ve yük şartında test edilerek frekans, gerilim, akım, hız, moment, çıkış gücü, güç faktörü ve verim sonuçları tasarım sonuçları ile karşılaştırılmıştır. Benzer şekilde prototip motor farklı yük şartlarında ısı testlerine alınarak ısı artışı eğrileri elde edilmiş ve sunulmuştur. Test sonuçları ile tasarım sonuçları büyük oranda benzerlik göstermiş olup, tasarım sonuçları test sonuçları ile doğrulanmıştır.

Thanks

Yazarlar, çalışmaya katkılarından dolayı ELSAN Elektrik San. ve Tic. A.Ş’ye teşekkür ederler.

References

  • Huda, M., Aziz, M., & Tokimatsu, K. (2019). The future of electric vehicles to grid integration in Indonesia. Energy Procedia, 158, 4592-4597.
  • Boldea, I., Tutelea, L. N., Parsa, L., & Dorrell, D. (2014). Automotive electric propulsion systems with reduced or no permanent magnets: An overview. IEEE Transactions on Industrial Electronics, 61(10), 5696-5711.
  • Dorrell, D. G., Knight, A. M., Popescu, M., Evans, L., & Staton, D. A. (2010, September). Comparison of different motor design drives for hybrid electric vehicles. In 2010 IEEE Energy Conversion Congress and Exposition (pp. 3352-3359). IEEE.
  • Çiçek, A., & Erdinç, O. (2019). PV-Batarya Hibrit Sistemi İçeren Elektrikli Araç Otoparkının Şarj Yönetimi. Avrupa Bilim ve Teknoloji Dergisi, (15), 466-474.
  • Terras, J. M., Neves, A., Sousa, D. M., & Roque, A. (2010, September). Estimation of the induction motor parameters of an electric vehicle. In 2010 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.
  • Sokolov, E. (2017, June). Comparative study of electric car traction motors. In 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA) (pp. 348-353). IEEE.
  • De Santiago, J., Bernhoff, H., Ekergård, B., Eriksson, S., Ferhatovic, S., Waters, R., & Leijon, M. (2011). Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Transactions on vehicular technology, 61(2), 475-484.
  • Pellegrino, G., Vagati, A., Boazzo, B., & Guglielmi, P. (2012). Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Transactions on industry applications, 48(6), 2322-2332.
  • Cui, J., Kramer, M., Zhou, L., Liu, F., Gabay, A., Hadjipanayis, G., ... & Sellmyer, D. (2018). Current progress and future challenges in rare-earth-free permanent magnets. Acta Materialia, 158, 118-137.
  • Ruoho, S., Kolehmainen, J., Ikaheimo, J., & Arkkio, A. (2009). Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor. IEEE Transactions on Magnetics, 46(3), 949-953.
  • Bitar, Z., & Al Jabi, S. (2014). Studying the performances of induction motor used in electric car. Energy Procedia, 50, 342-351.
  • Ulu, C., Korman, O., & Kömürgöz, G. (2017, July). Electromagnetic and thermal analysis/design of an induction motor for electric vehicles. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 6-10). IEEE.
  • Boldea, I. (2020). Induction machines handbook. CRC press.
  • Sen, P. C. (2007). Principles of electric machines and power electronics. John Wiley & Sons.

Design and Implementation of Asynchronous Motor For Light Electric Vehicles

Year 2021, Issue: 26 - Ejosat Special Issue 2021 (HORA), 228 - 233, 31.07.2021
https://doi.org/10.31590/ejosat.949092

Abstract

Speed, torque and power values of asynchronous traction motors (ATM) to be used in light electric vehicles vary depending on many parameters such as the number of starting and braking, speed limit, need for acceleration, total vehicle weight, depending on the driving cycle in the area where it is intended to be used. However, industrial type squirrel cage asynchronous motors are designed to operate from the mains in continuous running duty and rated conditions, and they differ significantly from asynchronous traction motors to be used for electric vehicles in terms of design and performance requirements. This study aims to design an synchronous traction motor to be used in light electric vehicles which has 48V DC battery voltage, 3,5kW power and S2-60min short-time duty. Finite element analysis (FEA), performance outputs, test results of the prototype motor have been carried out with comparative results. Basic sizing equations for the required motor properties, physical dimensions of the designed asynchronous motor, stator and rotor slot dimensions, winding properties and performance values are given in the study. The designed motor is firstly subjected to FEA analyses and flux distributions and current densities in different operating conditions are given. The prototype asynchronous traction motor was tested under eight different speed and load conditions, and the results of frequency, voltage, current, speed, torque, output power, power factor and efficiency were compared with the simulation results. Similarly, the prototype motor was taken to temperature rise tests under different load conditions, and temperature curves were obtained and presented. The test results and the design results were substantially similar, and the design results were confirmed by the test results.

References

  • Huda, M., Aziz, M., & Tokimatsu, K. (2019). The future of electric vehicles to grid integration in Indonesia. Energy Procedia, 158, 4592-4597.
  • Boldea, I., Tutelea, L. N., Parsa, L., & Dorrell, D. (2014). Automotive electric propulsion systems with reduced or no permanent magnets: An overview. IEEE Transactions on Industrial Electronics, 61(10), 5696-5711.
  • Dorrell, D. G., Knight, A. M., Popescu, M., Evans, L., & Staton, D. A. (2010, September). Comparison of different motor design drives for hybrid electric vehicles. In 2010 IEEE Energy Conversion Congress and Exposition (pp. 3352-3359). IEEE.
  • Çiçek, A., & Erdinç, O. (2019). PV-Batarya Hibrit Sistemi İçeren Elektrikli Araç Otoparkının Şarj Yönetimi. Avrupa Bilim ve Teknoloji Dergisi, (15), 466-474.
  • Terras, J. M., Neves, A., Sousa, D. M., & Roque, A. (2010, September). Estimation of the induction motor parameters of an electric vehicle. In 2010 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.
  • Sokolov, E. (2017, June). Comparative study of electric car traction motors. In 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA) (pp. 348-353). IEEE.
  • De Santiago, J., Bernhoff, H., Ekergård, B., Eriksson, S., Ferhatovic, S., Waters, R., & Leijon, M. (2011). Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Transactions on vehicular technology, 61(2), 475-484.
  • Pellegrino, G., Vagati, A., Boazzo, B., & Guglielmi, P. (2012). Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Transactions on industry applications, 48(6), 2322-2332.
  • Cui, J., Kramer, M., Zhou, L., Liu, F., Gabay, A., Hadjipanayis, G., ... & Sellmyer, D. (2018). Current progress and future challenges in rare-earth-free permanent magnets. Acta Materialia, 158, 118-137.
  • Ruoho, S., Kolehmainen, J., Ikaheimo, J., & Arkkio, A. (2009). Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor. IEEE Transactions on Magnetics, 46(3), 949-953.
  • Bitar, Z., & Al Jabi, S. (2014). Studying the performances of induction motor used in electric car. Energy Procedia, 50, 342-351.
  • Ulu, C., Korman, O., & Kömürgöz, G. (2017, July). Electromagnetic and thermal analysis/design of an induction motor for electric vehicles. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 6-10). IEEE.
  • Boldea, I. (2020). Induction machines handbook. CRC press.
  • Sen, P. C. (2007). Principles of electric machines and power electronics. John Wiley & Sons.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cemil Ocak 0000-0001-6542-6350

Burak Yenipınar 0000-0002-5997-944X

Publication Date July 31, 2021
Published in Issue Year 2021 Issue: 26 - Ejosat Special Issue 2021 (HORA)

Cite

APA Ocak, C., & Yenipınar, B. (2021). Hafif Elektrikli Araçlar için Asenkron Motor Tasarımı ve Uygulaması. Avrupa Bilim Ve Teknoloji Dergisi(26), 228-233. https://doi.org/10.31590/ejosat.949092

Cited By

Design and Performance Analysis of an Outer-Rotor PMaSynRM
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
https://doi.org/10.29109/gujsc.1393844