Conference Paper
BibTex RIS Cite

A Novel Hybrid Approach Based on Jaya Algorithm to estimate Energy Need of Turkey

Year 2021, Issue: 26 - Ejosat Special Issue 2021 (HORA), 96 - 99, 31.07.2021
https://doi.org/10.31590/ejosat.949440

Abstract

The main objective of this study is to develop a highly predictive model to forecast Turkey’s energy consumption. The model has developed based on regression functions and Jaya algorithm which is a new and powerful optimization algorithm. Linear, exponential, hyperbolic and quadratic functions were used as regression functions. Gross domestic product, population, import and export data have been used as independent variables in the model. The accuracy of Jaya method was investigated using error criteria such as average relative error, root mean square error, and mean absolute error. As a result of the analysis, it was concluded that the quadratic function developed with Jaya algorithm performed better than the others. After the optimal configurations have been defined, a scenario has been developed to estimate Turkey's future energy consumption values. The obtained results are compared with the previous studies. According to the obtained results, primary energy consumption of Turkey can be modeled using the proposed model and Jaya can be used to predict Turkey's future energy need.

References

  • Boru Hatları ile Petrol Taşıma Anonim Şirketi (BOTAS). (2015). 2015 yılı faliyet raporu. https://www.botas.gov.tr/docs/raporlar/tur/sektorap_2015.pdf, (erişim tarihi:26.03.2021).
  • Bordbari, M.J., Seifi, A.R., & Rastegar M. (2018). Probabilistic energy consumption analysis in buildings using point estimate method. Energy 142, 716–722.
  • Canyurt O.E., Ceylan, H. Ozturk, H.K. & Hepbasli, A. (2004). Energy demand estimation based on two–different genetic algorithm approaches. Energy Sources 26,1313–1320.
  • Ceylan, H., & Ozturk, H.K. (2004). Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Conversion and Management 45, 2525–2537.
  • Canyurt O.E., Ceylan, H., Ozturk, H.K., & Hepbasli, A. (2004). Energy demand estimation based on two–different genetic algorithm approaches. Energy Sources 26, 1313–1320.
  • Ceylan, H., Ozturk, H.K., Hepbasli, A., & Utlu, Z. (2005). Estimating energy and exergy production and consumption values using three different genetic algorithm approaches, part 2: application and scenarios. Energy Sources 27, 629–639.
  • Ediger, V.S., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35:1701–1708.
  • Enerji ve Tabi Kaynaklar Bakanlığı (ETKB). (2019). http://www.enerji.gov.tr/File/?path=ROOT%2f1%2fDocuments%2fMavi%20Kitap%2fMavi_Kitap_2012.pdf, (erişim tarihi: 20.03.2021).
  • Kıran, M.S., Ozceylan, E., Gunduz, M., & Paksoy, T. (2012). A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy Conversion and Management 53, 75–83.
  • Ozturk, H.K., Canyurt, O.E. Hepbasli, A., & Utlu, Z. (2004). Residential–commercial energy input estimation based on genetic algorithm approaches: an application of Turkey. Energy and Buildings 36, 175–183.
  • Rao, R.V. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations 7, 19–34.
  • Toksari, M.D. (2007). Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 35, 3984–3990.
  • Tefek, M.F., Uğuz H., & Güçyetmez M. (2019). A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey. Neural Computing and Applications 31, 2939–2954.
  • Türkiye İstatistik Kurumu (TÜİK). (2019a). Nüfus ve demografi, nüfus istatistikleri. http://www.turkstat.gov.tr/UstMenu.do?metod=temelist, , (erişim tarihi:20.03.2021).
  • Türkiye İstatistik Kurumu (TÜİK). (2019b). İstatiksel tablolar, yıllara göre dış ticaret. http://www.turkstat.gov.tr/PreTablo.do?alt_id=1046, (erişim tarihi:20.03.2021).
  • Türkiye Cumhuriyeti Kalkınma Bakanlığı (TKB). (2019). Ulusal Gelir ve Üretim (Tablo 1). www.kalkinma.gov.tr, (erişim tarihi:19.03.2021).
  • Unler, A. (2008). Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy 36, 1937–1944.

Türkiye’nin Enerji İhtiyacını Tahmin Etmek için Jaya Algoritmasına Dayalı Yeni Hibrit Bir Yaklaşım

Year 2021, Issue: 26 - Ejosat Special Issue 2021 (HORA), 96 - 99, 31.07.2021
https://doi.org/10.31590/ejosat.949440

Abstract

Bu çalışmanın temel amacı, Türkiye’nin enerji tüketimini tahmin etmek için tahmin gücü yüksek bir model geliştirmektir. Model yeni ve güçlü bir optimizasyon algoritması olan Jaya algoritması ve regresyon fonksiyonlarına dayalı olarak geliştirilmiştir. Regresyon fonksiyonu olarak lineer, hiperbolik, eksponansiyel ve ikinci derceden fonksiyon kullanılmıştır. Modelde gayri safi yurtiçi hasıla, nüfus, ithalat ve ihracat verileri bağımsız değişkenler olarak kullanılmıştır. Jaya yönteminin doğruluğu, ortalama rölatif hata, ortalama karesel hataların karekökü ve ortalama mutlak hata gibi hata kriterleri kullanılarak araştırılmıştır. Analizler sonucunda Jaya algoritması ile geliştirilen ikinci dereceden fonksiyonun diğerlerine göre daha iyi performans gösterdiği sonucuna varılmıştır. Optimal konfigürasyonlar tanımlandıktan sonra, Türkiye’nin gelecekteki enerji tüketim değerlerini tahmin etmek amacıyla bir senaryo geliştirilmiştir. Elde edilen sonuçlar önceki çalışmalarla karşılaştırılmıştır. Elde edilen sonuçlara göre, önerilen model kullanılarak Türkiye’nin birincil enerji tüketimi modellenebilir ve Jaya, Türkiye'nin gelecekteki enerji ihtiyacını tahmin etmek için kullanılabilir.

References

  • Boru Hatları ile Petrol Taşıma Anonim Şirketi (BOTAS). (2015). 2015 yılı faliyet raporu. https://www.botas.gov.tr/docs/raporlar/tur/sektorap_2015.pdf, (erişim tarihi:26.03.2021).
  • Bordbari, M.J., Seifi, A.R., & Rastegar M. (2018). Probabilistic energy consumption analysis in buildings using point estimate method. Energy 142, 716–722.
  • Canyurt O.E., Ceylan, H. Ozturk, H.K. & Hepbasli, A. (2004). Energy demand estimation based on two–different genetic algorithm approaches. Energy Sources 26,1313–1320.
  • Ceylan, H., & Ozturk, H.K. (2004). Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Conversion and Management 45, 2525–2537.
  • Canyurt O.E., Ceylan, H., Ozturk, H.K., & Hepbasli, A. (2004). Energy demand estimation based on two–different genetic algorithm approaches. Energy Sources 26, 1313–1320.
  • Ceylan, H., Ozturk, H.K., Hepbasli, A., & Utlu, Z. (2005). Estimating energy and exergy production and consumption values using three different genetic algorithm approaches, part 2: application and scenarios. Energy Sources 27, 629–639.
  • Ediger, V.S., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35:1701–1708.
  • Enerji ve Tabi Kaynaklar Bakanlığı (ETKB). (2019). http://www.enerji.gov.tr/File/?path=ROOT%2f1%2fDocuments%2fMavi%20Kitap%2fMavi_Kitap_2012.pdf, (erişim tarihi: 20.03.2021).
  • Kıran, M.S., Ozceylan, E., Gunduz, M., & Paksoy, T. (2012). A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy Conversion and Management 53, 75–83.
  • Ozturk, H.K., Canyurt, O.E. Hepbasli, A., & Utlu, Z. (2004). Residential–commercial energy input estimation based on genetic algorithm approaches: an application of Turkey. Energy and Buildings 36, 175–183.
  • Rao, R.V. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations 7, 19–34.
  • Toksari, M.D. (2007). Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 35, 3984–3990.
  • Tefek, M.F., Uğuz H., & Güçyetmez M. (2019). A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey. Neural Computing and Applications 31, 2939–2954.
  • Türkiye İstatistik Kurumu (TÜİK). (2019a). Nüfus ve demografi, nüfus istatistikleri. http://www.turkstat.gov.tr/UstMenu.do?metod=temelist, , (erişim tarihi:20.03.2021).
  • Türkiye İstatistik Kurumu (TÜİK). (2019b). İstatiksel tablolar, yıllara göre dış ticaret. http://www.turkstat.gov.tr/PreTablo.do?alt_id=1046, (erişim tarihi:20.03.2021).
  • Türkiye Cumhuriyeti Kalkınma Bakanlığı (TKB). (2019). Ulusal Gelir ve Üretim (Tablo 1). www.kalkinma.gov.tr, (erişim tarihi:19.03.2021).
  • Unler, A. (2008). Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy 36, 1937–1944.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ergun Uzlu 0000-0002-2394-179X

Publication Date July 31, 2021
Published in Issue Year 2021 Issue: 26 - Ejosat Special Issue 2021 (HORA)

Cite

APA Uzlu, E. (2021). Türkiye’nin Enerji İhtiyacını Tahmin Etmek için Jaya Algoritmasına Dayalı Yeni Hibrit Bir Yaklaşım. Avrupa Bilim Ve Teknoloji Dergisi(26), 96-99. https://doi.org/10.31590/ejosat.949440