Research Article
BibTex RIS Cite

Number of Subsets of the Set [n] Including No Three Consecutive Even Integers.

Year 2021, Issue: 28, 552 - 556, 30.11.2021
https://doi.org/10.31590/ejosat.1008742

Abstract

Consider an integer sequence counting the number of subsets of S of the set {1,2, . . . ,n } containing no three consecutive even integers. The sequence is associated with the Tribonacci sequence. Furthermore, we investigate some basic properties of the sequence.

References

  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, 67-69.
  • Feinberg, M. (1963). Fibonacci–Tribonacci, Fibonacci Quarterly, 1, 71–74.
  • Pethe, S. (1988). Some Identities for Tribonacci sequences, Fibonacci Q., 26, 144–151.
  • Ramirez, J. L. and Sirvent, V. F. (2014), Incomplete Tribonacci numbers and polynomials, Journal of Integer Sequences, 17 Article 14.4.2.
  • Shannon, A. (1977). Tribonacci numbers and Pascal’s pyramid, Fibonacci Q., 15, 268–275.
  • Spickerman, W. and Joyner, R. N. Binets’s formula for the Recursive sequence of Order K, Fibonacci Q., 22, 327–331.
  • Spickerman, W. (1982). Binet’s formula for the Tribonacci sequence, Fibonacci Q., 20, (118-120).
  • Wilf, H. S. (1990). Generatingfunctionology, Academic Press.
  • Yalavigi, C. C. (1972), Properties of Tribonacci numbers, Fibonacci Quarterly, 10 231–246.
  • Yilmaz, N. and Taskara, N. (2014). Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Appl. Math. Sci., 8(39), 1947–1955.

[n] Kümesinin Ardışık Üç Çift Tam Sayı İçermeyen Alt Kümelerinin Sayısı

Year 2021, Issue: 28, 552 - 556, 30.11.2021
https://doi.org/10.31590/ejosat.1008742

Abstract

{1,2, . . . ,n } kümesinin ardışık üç çift tam sayı içermeyen S alt kümelerinin sayısını veren tam sayı dizisini alalım. Bu dizi Tribonacci sayı dizisi ile ilişkilendirildi. Ayrıca dizinin bazı temel özellikleri incelendi.

References

  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, 67-69.
  • Feinberg, M. (1963). Fibonacci–Tribonacci, Fibonacci Quarterly, 1, 71–74.
  • Pethe, S. (1988). Some Identities for Tribonacci sequences, Fibonacci Q., 26, 144–151.
  • Ramirez, J. L. and Sirvent, V. F. (2014), Incomplete Tribonacci numbers and polynomials, Journal of Integer Sequences, 17 Article 14.4.2.
  • Shannon, A. (1977). Tribonacci numbers and Pascal’s pyramid, Fibonacci Q., 15, 268–275.
  • Spickerman, W. and Joyner, R. N. Binets’s formula for the Recursive sequence of Order K, Fibonacci Q., 22, 327–331.
  • Spickerman, W. (1982). Binet’s formula for the Tribonacci sequence, Fibonacci Q., 20, (118-120).
  • Wilf, H. S. (1990). Generatingfunctionology, Academic Press.
  • Yalavigi, C. C. (1972), Properties of Tribonacci numbers, Fibonacci Quarterly, 10 231–246.
  • Yilmaz, N. and Taskara, N. (2014). Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Appl. Math. Sci., 8(39), 1947–1955.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Barış Arslan 0000-0002-6972-3317

Kemal Uslu 0000-0001-6265-3128

Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 28

Cite

APA Arslan, B., & Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Even Integers. Avrupa Bilim Ve Teknoloji Dergisi(28), 552-556. https://doi.org/10.31590/ejosat.1008742