Çoklu Bölmeli Kare Tankta Su Çalkalanmasının Sayısal Araştırması
Year 2021,
Issue: 28, 1062 - 1070, 30.11.2021
Ferhat Koca
,
Mustafa Zabun
Abstract
Çalkalanma, kısmen doldurulmuş tankların içindeki sıvıların hareketini tanımlar ve tank yapısı üzerinde dinamik yükler oluşturur. Tankın yapısal mukavemetinin değerlendirilmesinde çalkalanma sonucu ortaya çıkan darbe basınçlarının önemi yüksektir. Bu basınçların tespitinin zorluğu tasarımcılar açısından sorun teşkil etmektedir. Bu çalışmada, kare bir tankta yatay hareketlerin çalkantı etkisi hesaplamalı akışkanlar dinamiği (HAD) uygulaması olan ANSYS-FLUENT analiz programı kullanılarak sayısal olarak incelenmiştir. %50 su dolu kare bir tankın, yan duvarlarına farklı açılarda perdeler (10̊, 20̊ ve 30̊) ve zeminine farklı sayılarda perdeler (tek ve çift) yerleştirilmiştir. 0-2 sn. süre arasında tank pozitif, 2-4 sn. süre arasında negatif ve 4-6 sn. süre arasında tekrar pozitif x ekseninde 4.5 m/s2’lik hız ile hareket ettirilmiştir. Akışkan ara yüzünü yakalamak için VOF metodu kullanılmıştır. Her tank konfigürasyonuna bağlı olarak belirlenen noktalardan dinamik basınç ölçümleri yapılmış ve her tank konfigürasyonu için akışkan ara yüz hareketleri karşılaştırılmıştır. Edinilen veriler yorumlanarak sonuç olarak yazılmıştır.
References
- Hu Z.Q., Wang S.Y., Chen G., Chai S.H. (2017). The effects of LNG-tank sloshing on the global motions of FLNG system. International Journal of Naval Architecture and Ocean Engineering, Vol. 9(1), 114–125, doi: 10.1016/j.ijnaoe.2016.09.007.
- Javanshir A., Elahi R., Passandideh-Fard M. (2012). Numerical simulation of liquid sloshing in a container with baffles. 12th Iran. Aerosp. Soc. Conf., 27(1), 54–61, doi: 10.3969/j.issn1000-4874.2012.01.008.
- Kim Y. (2007). Experimental and Numerical Analyses of Sloshing Flows. Journal of Engineering Mathematics, 58, 191–210, doi.org/10.1007/s10665-006-9124-42007.
- Klatte J., Darkow N., Gajdacz R., Goek S. (2020). Sloshing and pressurization tests for membrane tank: Tests, validation and models. Acta Astronaut., Vol. 175, No. May, 338–348, doi: 10.1016/j.actaastro.2020.05.036.
- Nema P.K. (2014). Computational study of sloshing behavior in 3-D rectangular tank with and without baffle under Seismic Excitation. MTech thesis, 212, 61.
- Rudman M. & Cleary, P. W. (2009). Modelling sloshing in LNG tanks. Seventh Int. Conf. CFD Miner. Process Ind., no. December, pp. 1–6.
- Sahin, G. & Bayraktar, S. (2015). Flow Visualization of Sloshing in an Accelerated Two-Dimensional Rectangular Tank. International Journal of Engineering Technologies IJET, 1 (3), 106-112. DOI: 10.19072/ijet.105725
- Sanapala V.S., Rajkumar M., Velusamy K., Patnaik B.S.V. (2018). Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. Journal of Fluids and Structures. vol. 76, pp. 229–250, doi: 10.1016/j.jfluidstructs.2017.10.001.
- Thiagarajan K.P., Rakshit D., Repalle N. (2011). The airwater sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels. Ocean Engineering, vol. 38, no. 2–3, pp. 498–508, doi: 10.1016/j.oceaneng.2010.11.019.
- Wang J. D., Lo S. H., Zhou D. (2013). Sloshing of liquid in rigid cylindrical container with multiple rigid annular baffles: Lateral excitations. J. Fluids Struct., vol. 42, pp. 421–436, doi: 10.1016/j.jfluidstructs.2013.07.005.
- White F. M. (2011) Fluid Mechanics, 5th Edition. McGraw- Hill.
Numerical Investigation of Water Sloshing in Square Tank with Multiple Baffles
Year 2021,
Issue: 28, 1062 - 1070, 30.11.2021
Ferhat Koca
,
Mustafa Zabun
Abstract
Sloshing describes the movement of liquids inside partially filled tanks and creates dynamic loads on the tank structure. In the evaluation of the structural strength of the tank, the impact pressures resulting from agitation are of great importance. The fact that the determination of these pressures is not easy poses a problem for the designers. In this study, the sloshing effect of horizontal movements in a square tank was numerically investigated using the ANSYS-FLUENT analysis program, which is a Computational Fluid Dynamics application. A square tank filled with 50% water has baffles at different angles (10̊, 20̊ and 30̊) on the side walls and different numbers of baffles (single and double) on the floor. The tank was moved with a velocity of 4.5 m/s2 in the negative x-axis between 0-2 seconds and in the positive x-axis between 4-6 seconds. The VOF method was used to capture the fluid interface. Dynamic pressure measurements were made from the points determined depending on each tank configuration and fluid interface movements were compared for each tank configuration. The given data has been interpreted and written as a result.
References
- Hu Z.Q., Wang S.Y., Chen G., Chai S.H. (2017). The effects of LNG-tank sloshing on the global motions of FLNG system. International Journal of Naval Architecture and Ocean Engineering, Vol. 9(1), 114–125, doi: 10.1016/j.ijnaoe.2016.09.007.
- Javanshir A., Elahi R., Passandideh-Fard M. (2012). Numerical simulation of liquid sloshing in a container with baffles. 12th Iran. Aerosp. Soc. Conf., 27(1), 54–61, doi: 10.3969/j.issn1000-4874.2012.01.008.
- Kim Y. (2007). Experimental and Numerical Analyses of Sloshing Flows. Journal of Engineering Mathematics, 58, 191–210, doi.org/10.1007/s10665-006-9124-42007.
- Klatte J., Darkow N., Gajdacz R., Goek S. (2020). Sloshing and pressurization tests for membrane tank: Tests, validation and models. Acta Astronaut., Vol. 175, No. May, 338–348, doi: 10.1016/j.actaastro.2020.05.036.
- Nema P.K. (2014). Computational study of sloshing behavior in 3-D rectangular tank with and without baffle under Seismic Excitation. MTech thesis, 212, 61.
- Rudman M. & Cleary, P. W. (2009). Modelling sloshing in LNG tanks. Seventh Int. Conf. CFD Miner. Process Ind., no. December, pp. 1–6.
- Sahin, G. & Bayraktar, S. (2015). Flow Visualization of Sloshing in an Accelerated Two-Dimensional Rectangular Tank. International Journal of Engineering Technologies IJET, 1 (3), 106-112. DOI: 10.19072/ijet.105725
- Sanapala V.S., Rajkumar M., Velusamy K., Patnaik B.S.V. (2018). Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. Journal of Fluids and Structures. vol. 76, pp. 229–250, doi: 10.1016/j.jfluidstructs.2017.10.001.
- Thiagarajan K.P., Rakshit D., Repalle N. (2011). The airwater sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels. Ocean Engineering, vol. 38, no. 2–3, pp. 498–508, doi: 10.1016/j.oceaneng.2010.11.019.
- Wang J. D., Lo S. H., Zhou D. (2013). Sloshing of liquid in rigid cylindrical container with multiple rigid annular baffles: Lateral excitations. J. Fluids Struct., vol. 42, pp. 421–436, doi: 10.1016/j.jfluidstructs.2013.07.005.
- White F. M. (2011) Fluid Mechanics, 5th Edition. McGraw- Hill.