Research Article
BibTex RIS Cite

Normalizasyon ve Standardizasyonun Nesnelerin İnterneti Saldırılarındaki Etkileri

Year 2021, Issue: 29, 187 - 192, 01.12.2021
https://doi.org/10.31590/ejosat.1017427

Abstract

Bilgisayar çağında yaşadığımız ve dünyadaki birçok cihazın internete erişimi olduğu herkes tarafından bilinen bir gerçektir. Peki bu internete bağlanan cihazlar ne kadar güvenlidir? Davetsiz misafirlerden –saldırgan- kullanıcı bilgilerine erişilmeyeceğine dair herhangi bir garanti verilebilir mi mı? Nesnelerin İnterneti (IoT) kavramının hayatımıza girmesinden sonra evdeki buzdolabında bulunan yiyecekleri görmek, arabanın içinden internete bağlanmak, kullanılan akıllı saatten görüntülü sohbet etmek gibi pek çok şey insan hayatına girmiştir. Bu yeni kavramlar ile birlikte kötü amaçlı yazılımların ve saldırganların da sayısı artmaktadır. Bu konularda çalışma yapan araştırmacılar giderek artan veri sayısına bağlı olarak ağ güvenliğinin önemini vurgulamakta ve çalışmalarını bu alanda yoğunlaştırmaktadır.
Güvenli bir saldırı tespit sistemi tasarlarken veri ön işleme en önemli aşamalardan biridir. Ve IoT cihazlarında bu alanlarda yapılan çalışmalar hem dikkat çekmektedir hem de hız kazanmıştır. Yapılan bu çalışmada, IoT cihazlarına yönelik saldırıları tespit etmede makine öğrenmesi yaklaşımlarını daha başarılı kılmak için veri ön işlemede normalizasyon ve standardizasyonun önemini incelemek hedeflenmiştir. Buna göre çalışma, Bot-IoT veri kümesi kullanılarak Lojistik Regresyon, Karar Ağacı ve Stokastik Gradyan Arttırma makine öğrenme algoritmaları üzerinde gerçekleştirilmiştir. Bot-IoT veri kümesi, IoT cihazlarında güvenliği sağlamak için yapılan çalışmalarda yaygın olarak kullanılan popüler bir veri kümesidir. Seçilen bu veri kümesine veri ön işleme yapılmıştır, bunun için ayrı ayrı normalizasyon ve standardizasyon işlemleri uygulanmış ardından seçilen bu –normalize/standardize edilmiş- veri kümeleri ile belirlenen makine öğrenmesi algoritmaları eğitilmiş ve test edilmiştir. Makine öğrenmesi algoritmaları ile yapılan eğitimler sonucunda Doğruluk, Kesinlik, Geri Çağırma ve F1 Skor sonuçlarının değerleri incelenmiştir. Yapılan çalışma sonucunda ise Lojistik Regresyonda standardizasyonun doğruluk oranını %99.96'ya kadar arttırdığı görülmüştür.

References

  • Abbasi, F., Naderan, M., & Alavi, S. E. (2021, May). Anomaly detection in Internet of Things using feature selection and classification based on Logistic Regression and Artificial Neural Network on N-BaIoT dataset. In 2021 5th International Conference on Internet of Things and Applications (IoT) (pp. 1-7). IEEE.
  • Alshamkhany, M., Alshamkhany, W., Mansour, M., Khan, M., Dhou, S., & Aloul, F. (2020, November). Botnet Attack Detection using Machine Learning. In 2020 14th International Conference on Innovations in Information Technology (IIT) (pp. 203-208). IEEE.
  • Aysa, M. H., Ibrahim, A. A., & Mohammed, A. H. (2020, October). IoT ddos attack detection using machine learning. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-7). IEEE.
  • Bayazit, E. C., Sahingoz, O. K., & Dogan, B. (2020, June). Malware detection in Android systems with traditional machine learning models: a survey. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-8). IEEE.
  • Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (pp. 421-436). Springer, Berlin, Heidelberg.
  • Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD.
  • Injadat, M., Moubayed, A., & Shami, A. (2020, December). Detecting botnet attacks in IoT environments: an optimized machine learning approach. In 2020 32nd International Conference on Microelectronics (ICM) (pp. 1-4). IEEE.
  • Ferrag, M. A., Maglaras, L., Ahmim, A., Derdour, M., & Janicke, H. (2020). Rdtids: Rules and decision tree-based intrusion detection system for internet-of-things networks. Future internet, 12(3), 44.
  • Haq, S., & Singh, Y. (2018, December). Botnet detection using machine learning. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 240-245). IEEE.
  • Hilbe, J. M. (2009). Logistic regression models. Chapman and hall/CRC.
  • Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. Advances in neural information processing systems, 26, 315-323.
  • Karatas, G., Demir, O., & Sahingoz, O. K. (2020). Increasing the performance of machine learning-based IDSs on an imbalanced and up-to-date dataset. IEEE Access, 8, 32150-32162.
  • Kocyigit, E., Korkmaz, M., Sahingoz, O. K., & Diri, B. (2020, December). Real-Time Content-Based Cyber Threat Detection with Machine Learning. In International Conference on Intelligent Systems Design and Applications (pp. 1394-1403). Springer, Cham.
  • Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 100, 779-796.
  • Luo, C., Tan, Z., Min, G., Gan, J., Shi, W., & Tian, Z. (2020). A novel web attack detection system for internet of things via ensemble classification. IEEE Transactions on Industrial Informatics, 17(8), 5810-5818.
  • Menard, S. (2002). Applied logistic regression analysis (Vol. 106). Sage.
  • Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275-285.
  • Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., & Kohli, P. (2011, November). Decision tree fields. In 2011 International Conference on Computer Vision (pp. 1668-1675). IEEE.
  • Shafiq, M., Tian, Z., Sun, Y., Du, X., & Guizani, M. (2020). Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Future Generation Computer Systems, 107, 433-442.
  • Shukla, P. (2017, September). ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. In 2017 Intelligent Systems Conference (IntelliSys) (pp. 234-240). IEEE.
  • Sugi, S. S. S., & Ratna, S. R. (2020, December). Investigation of machine learning techniques in intrusion detection system for IoT network. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 1164-1167). IEEE.
  • Wright, R. E. (1995). Logistic regression.

The Effects of Normalization and Standardization an Internet of Things Attack Detection

Year 2021, Issue: 29, 187 - 192, 01.12.2021
https://doi.org/10.31590/ejosat.1017427

Abstract

It is a known fact that we live in the computer age and that many devices in the world have access to the internet. So how secure are these devices? Is there any guarantee that user information is not accessed from intruder? After the concept of the Internet of Things came into our lives, many things such as seeing the food in our home refrigerator, connecting to the Internet from the car and, and video chatting from our smart watch entered our lives. The number of malicious software is also increasing with these new connections. Researchers are increasingly emphasizing the importance of network security and intensifying their studies.
Data preprocessing is very important when designing a secure system. In this study, the importance of normalization and standardization in data preprocessing is examined to make machine learning approaches more successful for detecting attacks on IoT devices. The study was carried out in Logistic Regression, Decision Tree, and Stochastic Gradient Descent machine learning algorithms using the Bot-IoT dataset. Bot-IoT dataset is a popular dataset that is widely used in security studies on IoT devices. Normalization and standardization processes were applied to Bot-IoT dataset separately, so data preprocessing was performed, then selected machine learning algorithms were trained with these -normalized / standardized- datasets. As a result of the trainings made with machine learning algorithms, the values of Accuracy, Precision, Recall and F1 Score rates were examined. And as a result of the study, it was seen that the standardization increased the accuracy rate up to 99.96% in Logistic Regression.

References

  • Abbasi, F., Naderan, M., & Alavi, S. E. (2021, May). Anomaly detection in Internet of Things using feature selection and classification based on Logistic Regression and Artificial Neural Network on N-BaIoT dataset. In 2021 5th International Conference on Internet of Things and Applications (IoT) (pp. 1-7). IEEE.
  • Alshamkhany, M., Alshamkhany, W., Mansour, M., Khan, M., Dhou, S., & Aloul, F. (2020, November). Botnet Attack Detection using Machine Learning. In 2020 14th International Conference on Innovations in Information Technology (IIT) (pp. 203-208). IEEE.
  • Aysa, M. H., Ibrahim, A. A., & Mohammed, A. H. (2020, October). IoT ddos attack detection using machine learning. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-7). IEEE.
  • Bayazit, E. C., Sahingoz, O. K., & Dogan, B. (2020, June). Malware detection in Android systems with traditional machine learning models: a survey. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-8). IEEE.
  • Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (pp. 421-436). Springer, Berlin, Heidelberg.
  • Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD.
  • Injadat, M., Moubayed, A., & Shami, A. (2020, December). Detecting botnet attacks in IoT environments: an optimized machine learning approach. In 2020 32nd International Conference on Microelectronics (ICM) (pp. 1-4). IEEE.
  • Ferrag, M. A., Maglaras, L., Ahmim, A., Derdour, M., & Janicke, H. (2020). Rdtids: Rules and decision tree-based intrusion detection system for internet-of-things networks. Future internet, 12(3), 44.
  • Haq, S., & Singh, Y. (2018, December). Botnet detection using machine learning. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 240-245). IEEE.
  • Hilbe, J. M. (2009). Logistic regression models. Chapman and hall/CRC.
  • Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. Advances in neural information processing systems, 26, 315-323.
  • Karatas, G., Demir, O., & Sahingoz, O. K. (2020). Increasing the performance of machine learning-based IDSs on an imbalanced and up-to-date dataset. IEEE Access, 8, 32150-32162.
  • Kocyigit, E., Korkmaz, M., Sahingoz, O. K., & Diri, B. (2020, December). Real-Time Content-Based Cyber Threat Detection with Machine Learning. In International Conference on Intelligent Systems Design and Applications (pp. 1394-1403). Springer, Cham.
  • Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 100, 779-796.
  • Luo, C., Tan, Z., Min, G., Gan, J., Shi, W., & Tian, Z. (2020). A novel web attack detection system for internet of things via ensemble classification. IEEE Transactions on Industrial Informatics, 17(8), 5810-5818.
  • Menard, S. (2002). Applied logistic regression analysis (Vol. 106). Sage.
  • Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275-285.
  • Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., & Kohli, P. (2011, November). Decision tree fields. In 2011 International Conference on Computer Vision (pp. 1668-1675). IEEE.
  • Shafiq, M., Tian, Z., Sun, Y., Du, X., & Guizani, M. (2020). Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Future Generation Computer Systems, 107, 433-442.
  • Shukla, P. (2017, September). ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. In 2017 Intelligent Systems Conference (IntelliSys) (pp. 234-240). IEEE.
  • Sugi, S. S. S., & Ratna, S. R. (2020, December). Investigation of machine learning techniques in intrusion detection system for IoT network. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 1164-1167). IEEE.
  • Wright, R. E. (1995). Logistic regression.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gözde Karataş Baydoğmuş 0000-0003-2303-9410

Early Pub Date December 15, 2021
Publication Date December 1, 2021
Published in Issue Year 2021 Issue: 29

Cite

APA Karataş Baydoğmuş, G. (2021). The Effects of Normalization and Standardization an Internet of Things Attack Detection. Avrupa Bilim Ve Teknoloji Dergisi(29), 187-192. https://doi.org/10.31590/ejosat.1017427