Research Article
BibTex RIS Cite

Boeing ve Airbus Uçaklarında Kanat, Gövde ve Kuyruk Tasarım Parametrelerinin İncelenmesi

Year 2021, Issue: 31, 699 - 705, 31.12.2021
https://doi.org/10.31590/ejosat.1017730

Abstract

Çalışma, Airbus ve Boeing uçaklarının kanat gövde ve kuyruk tasarım parametrelerini incelemeyi ve bu tip büyük ticari yolcu uçakların tasarımına yönelik tasarım kriterlerini ortaya koymayı amaçlamaktadır. Çalışmada 11 Airbus modeli ve 14 Boeing modeli için tasarım ve boyutlandırma verileri derlenmiştir. Yan yana koltuk sayısı, maksimum koltuk sayısı, gövde uzunluğu, gövde genişliği, incelik oranı, kuyruk bölümü uzunluğu, kokpit uzunluğu ve kargo bölümünün uzunluğu gövde tasarımı hakkında incelenen parametrelerdir. Kanat alanı, kanat açıklığı, ortalama kiriş uzunluğu, ortalama aerodinamik kirişler MAC, en-boy oranı, koniklik oranı, çeyrek veter süpürme açısı, dihedral açısı ve winglet uzunlukları kanat tasarımı hakkında çalışılan temel parametrelerdir. Dikey ve yatay kuyruk alanı, açıklık, en-boy oranı, koniklik oranı ve çeyrek veter süpürme açısı, kuyruk tasarımı hakkında çalışılan temel unsurlardır. Çalışma sonucunda sunulan grafikler yardımıyla Airbus ve Boeing uçakları için istisnai tasarımlar ve ortalama tasarım kriterleri ortaya konmuştur. Ek olarak, doğrusal korelasyonlar, MAC'nin kanat açıklığının yaklaşık 0.14 katı ve ortalama kiriş uzunluğunun yaklaşık 1.168 katı olduğunu ortaya koymaktadır.

References

  • Newhouse, J. (2007). Boeing versus Airbus. Vintage.
  • Petrescu, R. V., Aversa, R., Akash, B., Corchado, J., Berto, F., Apicella, A., & Petrescu, F. I. (2017). When boeing is dreaming–a review. Journal of Aircraft and Spacecraft Technology, 1(3).
  • Flottau, J. (2018). Airbus and Boeing ponder higher narrowbody production: after strong 2017, both manufacturers see upward pressure on rates; suppliers warn of potential bottlenecks. Aviation Week & Space Technology.
  • Flight Global (2019) World Airline Census 2019,” Flight International.
  • Raymer, D. (2018). Aircraft design: a conceptual approach. American Institute of Aeronautics and Astronautics, Inc
  • Fielding, J. P. (2017). Introduction to aircraft design (Vol. 11). Cambridge University Press.
  • Morichon, L. (2006). Selected statistics in aircraft design. Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences.
  • Roskam, J. (1989). Airplane design part III: layout design of cockpit, fuselage, wing and empennage: cutaways and inboard profiles. Roskam j., airplane design: part IV, layout design of landing gear and system.
  • Kruger, M., Huyssen, R. J., Smith, L., & Meyer, J. P. (2016). Application of a low fineness ratio fuselage to an airliner configuration. In 54th AIAA Aerospace Sciences Meeting (p. 1282).
  • Torenbeek, E. (2013). Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons.
  • Schmitt, D., & Gollnick, V. (2016). The Air Transport System. In Air Transport System (pp. 1-17). Springer, Vienna.
  • Yates, A. H. (1952). Notes on the Mean Aerodynamic Chord and the Mean Aerodynamic Centre of a Wing. The Aeronautical Journal, 56(498), 461-474.
  • Nicolai, L. M., & Carichner, G. E. (2010). Fundamentals of aircraft and airship design, Volume 1–Aircraft Design. American Institute of Aeronautics and Astronautics.
  • Vogeltanz, T. (2016, June). Application for calculation of mean aerodynamic chord of arbitrary wing planform. In AIP Conference Proceedings (Vol. 1738, No. 1, p. 120018). AIP Publishing LLC.
  • Sforza, P. M. (2020). Direct Calculation of Zero-Lift Drag Coefficients and (L/D)max in Subsonic Cruise. Journal of Aircraft, 57(6).
  • Redeker, G., & Wichmann, G. (1991). Forward sweep-A favorable concept for a laminar flow wing. Journal of aircraft, 28(2), 97-103.
  • [ Kundu, A. K. (2010). Aircraft design (Vol. 27). Cambridge University Press.
  • Suleman, A., Afonso, F., Vale, J., Oliveira, É., & Lau, F. (2016). Non-linear aeroelastic analysis in the time domain of high-aspect-ratio wings: Effect of chord and taper-ratio variation. The Aeronautical Journal, 121(1235).
  • Nicolosi, F., Ciliberti, D., Della Vecchia, P., Corcione, S., & Cusati, V. (2017). A comprehensive review of vertical tail design. Aircraft Engineering and Aerospace Technology.
  • Yass, M. A. (2007). Effect of Airplane Tail Aspect Ratio on Lateral-Directional Stability. Engineering and Technology Journal, 25(6).
  • Obert, E. (2009). Aerodynamic design of transport aircraft. IOS press.
  • Frediani, A., Cipolla, V., Salem, K. A., Binante, V., & Scardaoni, M. P. (2019). Conceptual design of PrandtlPlane civil transport aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 095441001982643.
  • Elmendorp, R. J. M., Vos, R., & La Rocca, G. (2014). A conceptual design and analysis method for conventional and unconventional airplanes. In ICAS 2014: Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7-12 September 2014. International Council of Aeronautical Sciences.
  • Yutko, B. M., Titchener, N., Courtin, C., Lieu, M., Wirsing, L., Tylko, J., … Church, C. S. (2017). Conceptual Design of a D8 Commercial Aircraft. 17th AIAA Aviation Technology, Integration, and Operations Conference.
  • Mody, P., Sato, S., Hall, D., De la Rosa Blanco, E., Hileman, J., & Wen, E. (2010, July). Conceptual design of an N+ 3 hybrid wing body subsonic transport. In 28th AIAA Applied Aerodynamics Conference (p. 4812).
  • Paul, J. (2005). Jane’s all the world’s aircraft. 2004-2005. Jane’s Information Group Inc, Alexandria.
  • Boeing (2021). Technical Specs. Access date: 20.09.2021 https://www.boeing.com/commercial/
  • Airbus, S. A. S. (2021). Airbus Family Figures. Airbus.

Investigation of Wing, Fuselage and Tail Design Parameters in Boeing and Airbus Aircraft

Year 2021, Issue: 31, 699 - 705, 31.12.2021
https://doi.org/10.31590/ejosat.1017730

Abstract

The study aims to examine the wing, fuselage and tail design parameters of Airbus and Boeing aircraft and to reveal the design criteria for the sizing of large commercial jets. Tin the study, the design and sizing data of 11 Airbus models and 14 Boeing models were compiled. The number of abreast seats, maximum seats, fuselage length, fuselage width, fineness ratio, tail section length, cockpit length and cargo compartment length are the main parameters studied about the fuselage design. Wing area, wingspan, aspect ratio, mean aerodynamic chord (MAC), taper ratio, dihedral angle, quarter chord sweep angle, and winglet lengths are the main parameters studied about the wing design. The area, span, aspect ratio, taper ratio, and quarter chord sweep angle of vertical and horizontal tail are the main parameters studied about the tail design. As a result of the study, exceptional designs and average design criteria for Airbus and Boeing aircraft have been revealed with the help of charts presented. In addition, the obtained linear correlations reveal that the MAC has about 0.14 times the wingspan and about 1.168 times the average chord length.

References

  • Newhouse, J. (2007). Boeing versus Airbus. Vintage.
  • Petrescu, R. V., Aversa, R., Akash, B., Corchado, J., Berto, F., Apicella, A., & Petrescu, F. I. (2017). When boeing is dreaming–a review. Journal of Aircraft and Spacecraft Technology, 1(3).
  • Flottau, J. (2018). Airbus and Boeing ponder higher narrowbody production: after strong 2017, both manufacturers see upward pressure on rates; suppliers warn of potential bottlenecks. Aviation Week & Space Technology.
  • Flight Global (2019) World Airline Census 2019,” Flight International.
  • Raymer, D. (2018). Aircraft design: a conceptual approach. American Institute of Aeronautics and Astronautics, Inc
  • Fielding, J. P. (2017). Introduction to aircraft design (Vol. 11). Cambridge University Press.
  • Morichon, L. (2006). Selected statistics in aircraft design. Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences.
  • Roskam, J. (1989). Airplane design part III: layout design of cockpit, fuselage, wing and empennage: cutaways and inboard profiles. Roskam j., airplane design: part IV, layout design of landing gear and system.
  • Kruger, M., Huyssen, R. J., Smith, L., & Meyer, J. P. (2016). Application of a low fineness ratio fuselage to an airliner configuration. In 54th AIAA Aerospace Sciences Meeting (p. 1282).
  • Torenbeek, E. (2013). Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons.
  • Schmitt, D., & Gollnick, V. (2016). The Air Transport System. In Air Transport System (pp. 1-17). Springer, Vienna.
  • Yates, A. H. (1952). Notes on the Mean Aerodynamic Chord and the Mean Aerodynamic Centre of a Wing. The Aeronautical Journal, 56(498), 461-474.
  • Nicolai, L. M., & Carichner, G. E. (2010). Fundamentals of aircraft and airship design, Volume 1–Aircraft Design. American Institute of Aeronautics and Astronautics.
  • Vogeltanz, T. (2016, June). Application for calculation of mean aerodynamic chord of arbitrary wing planform. In AIP Conference Proceedings (Vol. 1738, No. 1, p. 120018). AIP Publishing LLC.
  • Sforza, P. M. (2020). Direct Calculation of Zero-Lift Drag Coefficients and (L/D)max in Subsonic Cruise. Journal of Aircraft, 57(6).
  • Redeker, G., & Wichmann, G. (1991). Forward sweep-A favorable concept for a laminar flow wing. Journal of aircraft, 28(2), 97-103.
  • [ Kundu, A. K. (2010). Aircraft design (Vol. 27). Cambridge University Press.
  • Suleman, A., Afonso, F., Vale, J., Oliveira, É., & Lau, F. (2016). Non-linear aeroelastic analysis in the time domain of high-aspect-ratio wings: Effect of chord and taper-ratio variation. The Aeronautical Journal, 121(1235).
  • Nicolosi, F., Ciliberti, D., Della Vecchia, P., Corcione, S., & Cusati, V. (2017). A comprehensive review of vertical tail design. Aircraft Engineering and Aerospace Technology.
  • Yass, M. A. (2007). Effect of Airplane Tail Aspect Ratio on Lateral-Directional Stability. Engineering and Technology Journal, 25(6).
  • Obert, E. (2009). Aerodynamic design of transport aircraft. IOS press.
  • Frediani, A., Cipolla, V., Salem, K. A., Binante, V., & Scardaoni, M. P. (2019). Conceptual design of PrandtlPlane civil transport aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 095441001982643.
  • Elmendorp, R. J. M., Vos, R., & La Rocca, G. (2014). A conceptual design and analysis method for conventional and unconventional airplanes. In ICAS 2014: Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7-12 September 2014. International Council of Aeronautical Sciences.
  • Yutko, B. M., Titchener, N., Courtin, C., Lieu, M., Wirsing, L., Tylko, J., … Church, C. S. (2017). Conceptual Design of a D8 Commercial Aircraft. 17th AIAA Aviation Technology, Integration, and Operations Conference.
  • Mody, P., Sato, S., Hall, D., De la Rosa Blanco, E., Hileman, J., & Wen, E. (2010, July). Conceptual design of an N+ 3 hybrid wing body subsonic transport. In 28th AIAA Applied Aerodynamics Conference (p. 4812).
  • Paul, J. (2005). Jane’s all the world’s aircraft. 2004-2005. Jane’s Information Group Inc, Alexandria.
  • Boeing (2021). Technical Specs. Access date: 20.09.2021 https://www.boeing.com/commercial/
  • Airbus, S. A. S. (2021). Airbus Family Figures. Airbus.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seyhun Durmuş 0000-0002-1409-7355

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Durmuş, S. (2021). Investigation of Wing, Fuselage and Tail Design Parameters in Boeing and Airbus Aircraft. Avrupa Bilim Ve Teknoloji Dergisi(31), 699-705. https://doi.org/10.31590/ejosat.1017730