Research Article
BibTex RIS Cite

Araç Tavan Bagaj Taşıyıcısının Rastgele Titreşim Yorulma Analizi

Year 2021, Issue: 31, 92 - 103, 31.12.2021
https://doi.org/10.31590/ejosat.911120

Abstract

Bu çalışmada, arabanın tavan bagaj taşıyıcısının yorulma ömrünü tahmin etmek için rastgele titreşim analizi uygulanmıştır. Bu çalışmada sonlu eleman analizi için Ansys Workbench 19.2 programı kullanılmıştır. Araba tavan bagaj taşıyıcı geometrisi, 325,536 düğüm ve 105,682 eleman ile çözüm ağı ördürülmüştür. Aracın motor, rüzgar ve yol koşullarına göre elde edilen titreşim ve PSD verilerine göre uygulanan araç tavan bagaj taşıyıcısına 75kg yük tanımlanarak rastgele titreşim analizi uygulanmış ve Steinberg yöntemini kullanarak minimum 154564 saat süresince herhangi bir yorulma hasarı oluşmayacağı tahmin edilmiştir.

References

  • An, T., Qin, F., Zhou, B., Chen, P., Dai, Y., Li, H., & Tang, T. (2019). Vibration lifetime estimation of PBGA solder joints using Steinberg model. Microelectronics Reliability, 102, 113474. https://doi.org/10.1016/j.microrel.2019.113474
  • Bai, J., Qiu, Y., Li, J., Wang, H., & Wang, Z. (2021). An equivalent shape-preserving clipping method for the control spectrum to avoid over-testing of triaxial random vibration. Journal of Sound and Vibration, 501, 116060. https://doi.org/10.1016/j.jsv.2021.116060
  • Ben Fekih, L., Kouroussis, G., & Verlinden, O. (2015). Verification of empirical warp-based design criteria of space electronic boards. Microelectronics Reliability, 55(12), 2786–2792. https://doi.org/10.1016/j.microrel.2015.09.031
  • Dehbi, A., Ousten, Y., Danto, Y., & Wondrak, W. (2005). Vibration lifetime modelling of PCB assemblies using steinberg model. Microelectronics Reliability, 45(9–11), 1658–1661. https://doi.org/10.1016/j.microrel.2005.07.074
  • Demirel, G. I., & Kayran, A. (2019). Implementation of Dirlik’s damage model for the vibration fatigue analysis. Procedia Structural Integrity, 21, 101–111. https://doi.org/10.1016/j.prostr.2019.12.091
  • enDAQ. (2021). https://endaq.com/pages/power-spectral-density
  • Gao, D., Yao, W., Wen, W., & Huang, J. (2021). A multiaxial fatigue life prediction method for metallic material under combined random vibration loading and mean stress loading in the frequency domain. International Journal of Fatigue, 148, 106235. https://doi.org/10.1016/j.ijfatigue.2021.106235
  • Gharaibeh, M. A. (2020). A numerical study on the effect of the fixation methods on the vibration fatigue of electronic packages. Microelectronics Reliability, 115, 113967. https://doi.org/10.1016/j.microrel.2020.113967
  • Gharaibeh, M. A., & Pitarresi, J. M. (2019). Random vibration fatigue life analysis of electronic packages by analytical solutions and Taguchi method. Microelectronics Reliability, 102, 113475. https://doi.org/10.1016/j.microrel.2019.113475
  • Kersch, K., Schmidt, A., & Woschke, E. (2020). Multiaxial fatigue damage evaluation: A new method based on modal velocities. Journal of Sound and Vibration, 476, 115297. https://doi.org/10.1016/j.jsv.2020.115297
  • Li, L., Gu, X., Sun, S., Wang, W., Wan, Z., & Qian, P. (2018). Effects of welding residual stresses on the vibration fatigue life of a ship’s shock absorption support. Ocean Engineering, 170, 237–245. https://doi.org/10.1016/j.oceaneng.2018.10.011
  • Liu, X., Sooklal, V. K., Verges, M. A., & Larson, M. C. (2006). Experimental study and life prediction on high cycle vibration fatigue in BGA packages. Microelectronics Reliability, 46(7), 1128–1138. https://doi.org/10.1016/j.microrel.2005.09.011 Luo, Z., Chen, H., & He, X. (2020). Influences of correlations between biaxial random vibrations on the fatigue lives of notched metallic specimens. International Journal of Fatigue, 139, 105730. https://doi.org/10.1016/j.ijfatigue.2020.105730
  • Muhammad, N., Fang, Z., & Shoaib, M. (2020). Remaining useful life (RUL) estimation of electronic solder joints in rugged environment under random vibration. Microelectronics Reliability, 107, 113614. https://doi.org/10.1016/j.microrel.2020.113614
  • Okeke, C. P., Thite, A. N., Durodola, J. F., & Greenrod, M. T. (2019). Fatigue life prediction of Polymethyl methacrylate (PMMA) polymer under random vibration loading. Procedia Structural Integrity, 17, 589–595. https://doi.org/10.1016/j.prostr.2019.08.079
  • Park, T. Y., & Oh, H. U. (2021). New PCB strain-based structural design methodology for reliable and rapid evaluation of spaceborne electronics under random vibration. International Journal of Fatigue, 146, 106147. https://doi.org/10.1016/j.ijfatigue.2021.106147
  • Poshtan, E. A., Xingyuan, C., & Roessle, A. (2018). Resonance frequency dependency of Thermal Interface Materials (TIM) under vibration. 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 1–5. https://doi.org/10.1109/EuroSimE.2018.8369948
  • Qu, W., Zhang, H., Sun, W., & Li, W. (2021). Stress response of the hydraulic composite pipe subjected to random vibration. Composite Structures, 255, 112958. https://doi.org/10.1016/j.compstruct.2020.112958
  • Sakamoto, J., & Shibutani, T. (2018). Analysis of fatigue damage of aluminium alloy under multiaxial random vibration. Procedia Structural Integrity, 13, 529–534. https://doi.org/10.1016/j.prostr.2018.12.087
  • Schriefer, T., & Hofmann, M. (2019). A hybrid frequency-time-domain approach to determine the vibration fatigue life of electronic devices. Microelectronics Reliability, 98, 86–94. https://doi.org/10.1016/j.microrel.2019.04.001
  • Steinberg, D. S. (1976). Avoiding vibration in odd-shaped printed circuit boards. Machine Design, 48(12), 116–119.
  • Su, Y., Fu, G., Wan, B., Yu, T., Zhou, W., & Wang, X. (2019). Fatigue reliability design for metal dual inline packages under random vibration based on response surface method. Microelectronics Reliability, 100–101, 113404. https://doi.org/10.1016/j.microrel.2019.113404
  • Trapp, A., Makua, M. J., & Wolfsteiner, P. (2019). Fatigue assessment of amplitude-modulated non-stationary random vibration loading. Procedia Structural Integrity, 17, 379–386. https://doi.org/10.1016/j.prostr.2019.08.050
  • Trapp, A., & Wolfsteiner, P. (2021). Frequency-domain characterization of varying random vibration loading by a non-stationarity matrix. International Journal of Fatigue, 146, 106115. https://doi.org/10.1016/j.ijfatigue.2020.106115
  • Wang, Y., Serra, R., & Argoul, E. P. (2019a). Adapted Locati method used for accelerated fatigue test under random vibrations. Procedia Structural Integrity, 19, 674–681. https://doi.org/10.1016/j.prostr.2019.12.073
  • Wang, Y., Serra, R., & Argoul, E. P. (2019b). Based on the virtual experiment study of the impact of load sequence on the calculation process of random vibration fatigue damage. Procedia Structural Integrity, 19, 682–687. https://doi.org/10.1016/j.prostr.2019.12.074
  • Xia, J., Li, G. Y., Li, B., Cheng, L. X., & Zhou, B. (2017). Fatigue life prediction of Package-on-Package stacking assembly under random vibration loading. Microelectronics Reliability, 71, 111–118. https://doi.org/10.1016/j.microrel.2017.03.005
  • Xia, J., Yang, L., Liu, Q., Peng, Q., Cheng, L. X., & Li, G. Y. (2019). Comparison of fatigue life prediction methods for solder joints under random vibration loading. Microelectronics Reliability, 95, 58–64. https://doi.org/10.1016/j.microrel.2019.02.008
  • Yaich, A., & El Hami, A. (2019). Multiaxial fatigue damage estimation of structures under random vibrations using Matsubara’s criterion. International Journal of Fatigue, 124, 253–264. https://doi.org/10.1016/j.ijfatigue.2019.03.003
  • Yaich, A., El Hami, A., Walha, L., & Haddar, M. (2017). Local multiaxial fatigue damage estimation for structures under random vibrations. Finite Elements in Analysis and Design, 132, 1–7. https://doi.org/10.1016/j.finel.2017.04.003
  • Zheng, R., Chen, H., Vandepitte, D., Gallas, S., & Zhang, B. (2019). Generation of sine on random vibrations for multi-axial fatigue tests. Mechanical Systems and Signal Processing, 126, 649–661. https://doi.org/10.1016/j.ymssp.2019.02.046

Random Vibration Fatigue Analysis of Car Roof Luggage Carrier

Year 2021, Issue: 31, 92 - 103, 31.12.2021
https://doi.org/10.31590/ejosat.911120

Abstract

In this paper, random vibration analysis was applied to predict the car roof luggage carrier's fatigue life. Ansys Workbench 19.2 program was used in this study for finite element analysis. The car roof luggage carrier geometry has meshed with 325,536 nodes and 105,682 elements. Random vibration analysis was applied by defining a 75kg load on the car roof luggage carrier applied according to the vibration and PSD data obtained according to the engine, wind, and road conditions of the vehicle, and it was estimated that no fatigue damage would occur for a minimum of 154564 hours using the Steinberg method.

References

  • An, T., Qin, F., Zhou, B., Chen, P., Dai, Y., Li, H., & Tang, T. (2019). Vibration lifetime estimation of PBGA solder joints using Steinberg model. Microelectronics Reliability, 102, 113474. https://doi.org/10.1016/j.microrel.2019.113474
  • Bai, J., Qiu, Y., Li, J., Wang, H., & Wang, Z. (2021). An equivalent shape-preserving clipping method for the control spectrum to avoid over-testing of triaxial random vibration. Journal of Sound and Vibration, 501, 116060. https://doi.org/10.1016/j.jsv.2021.116060
  • Ben Fekih, L., Kouroussis, G., & Verlinden, O. (2015). Verification of empirical warp-based design criteria of space electronic boards. Microelectronics Reliability, 55(12), 2786–2792. https://doi.org/10.1016/j.microrel.2015.09.031
  • Dehbi, A., Ousten, Y., Danto, Y., & Wondrak, W. (2005). Vibration lifetime modelling of PCB assemblies using steinberg model. Microelectronics Reliability, 45(9–11), 1658–1661. https://doi.org/10.1016/j.microrel.2005.07.074
  • Demirel, G. I., & Kayran, A. (2019). Implementation of Dirlik’s damage model for the vibration fatigue analysis. Procedia Structural Integrity, 21, 101–111. https://doi.org/10.1016/j.prostr.2019.12.091
  • enDAQ. (2021). https://endaq.com/pages/power-spectral-density
  • Gao, D., Yao, W., Wen, W., & Huang, J. (2021). A multiaxial fatigue life prediction method for metallic material under combined random vibration loading and mean stress loading in the frequency domain. International Journal of Fatigue, 148, 106235. https://doi.org/10.1016/j.ijfatigue.2021.106235
  • Gharaibeh, M. A. (2020). A numerical study on the effect of the fixation methods on the vibration fatigue of electronic packages. Microelectronics Reliability, 115, 113967. https://doi.org/10.1016/j.microrel.2020.113967
  • Gharaibeh, M. A., & Pitarresi, J. M. (2019). Random vibration fatigue life analysis of electronic packages by analytical solutions and Taguchi method. Microelectronics Reliability, 102, 113475. https://doi.org/10.1016/j.microrel.2019.113475
  • Kersch, K., Schmidt, A., & Woschke, E. (2020). Multiaxial fatigue damage evaluation: A new method based on modal velocities. Journal of Sound and Vibration, 476, 115297. https://doi.org/10.1016/j.jsv.2020.115297
  • Li, L., Gu, X., Sun, S., Wang, W., Wan, Z., & Qian, P. (2018). Effects of welding residual stresses on the vibration fatigue life of a ship’s shock absorption support. Ocean Engineering, 170, 237–245. https://doi.org/10.1016/j.oceaneng.2018.10.011
  • Liu, X., Sooklal, V. K., Verges, M. A., & Larson, M. C. (2006). Experimental study and life prediction on high cycle vibration fatigue in BGA packages. Microelectronics Reliability, 46(7), 1128–1138. https://doi.org/10.1016/j.microrel.2005.09.011 Luo, Z., Chen, H., & He, X. (2020). Influences of correlations between biaxial random vibrations on the fatigue lives of notched metallic specimens. International Journal of Fatigue, 139, 105730. https://doi.org/10.1016/j.ijfatigue.2020.105730
  • Muhammad, N., Fang, Z., & Shoaib, M. (2020). Remaining useful life (RUL) estimation of electronic solder joints in rugged environment under random vibration. Microelectronics Reliability, 107, 113614. https://doi.org/10.1016/j.microrel.2020.113614
  • Okeke, C. P., Thite, A. N., Durodola, J. F., & Greenrod, M. T. (2019). Fatigue life prediction of Polymethyl methacrylate (PMMA) polymer under random vibration loading. Procedia Structural Integrity, 17, 589–595. https://doi.org/10.1016/j.prostr.2019.08.079
  • Park, T. Y., & Oh, H. U. (2021). New PCB strain-based structural design methodology for reliable and rapid evaluation of spaceborne electronics under random vibration. International Journal of Fatigue, 146, 106147. https://doi.org/10.1016/j.ijfatigue.2021.106147
  • Poshtan, E. A., Xingyuan, C., & Roessle, A. (2018). Resonance frequency dependency of Thermal Interface Materials (TIM) under vibration. 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 1–5. https://doi.org/10.1109/EuroSimE.2018.8369948
  • Qu, W., Zhang, H., Sun, W., & Li, W. (2021). Stress response of the hydraulic composite pipe subjected to random vibration. Composite Structures, 255, 112958. https://doi.org/10.1016/j.compstruct.2020.112958
  • Sakamoto, J., & Shibutani, T. (2018). Analysis of fatigue damage of aluminium alloy under multiaxial random vibration. Procedia Structural Integrity, 13, 529–534. https://doi.org/10.1016/j.prostr.2018.12.087
  • Schriefer, T., & Hofmann, M. (2019). A hybrid frequency-time-domain approach to determine the vibration fatigue life of electronic devices. Microelectronics Reliability, 98, 86–94. https://doi.org/10.1016/j.microrel.2019.04.001
  • Steinberg, D. S. (1976). Avoiding vibration in odd-shaped printed circuit boards. Machine Design, 48(12), 116–119.
  • Su, Y., Fu, G., Wan, B., Yu, T., Zhou, W., & Wang, X. (2019). Fatigue reliability design for metal dual inline packages under random vibration based on response surface method. Microelectronics Reliability, 100–101, 113404. https://doi.org/10.1016/j.microrel.2019.113404
  • Trapp, A., Makua, M. J., & Wolfsteiner, P. (2019). Fatigue assessment of amplitude-modulated non-stationary random vibration loading. Procedia Structural Integrity, 17, 379–386. https://doi.org/10.1016/j.prostr.2019.08.050
  • Trapp, A., & Wolfsteiner, P. (2021). Frequency-domain characterization of varying random vibration loading by a non-stationarity matrix. International Journal of Fatigue, 146, 106115. https://doi.org/10.1016/j.ijfatigue.2020.106115
  • Wang, Y., Serra, R., & Argoul, E. P. (2019a). Adapted Locati method used for accelerated fatigue test under random vibrations. Procedia Structural Integrity, 19, 674–681. https://doi.org/10.1016/j.prostr.2019.12.073
  • Wang, Y., Serra, R., & Argoul, E. P. (2019b). Based on the virtual experiment study of the impact of load sequence on the calculation process of random vibration fatigue damage. Procedia Structural Integrity, 19, 682–687. https://doi.org/10.1016/j.prostr.2019.12.074
  • Xia, J., Li, G. Y., Li, B., Cheng, L. X., & Zhou, B. (2017). Fatigue life prediction of Package-on-Package stacking assembly under random vibration loading. Microelectronics Reliability, 71, 111–118. https://doi.org/10.1016/j.microrel.2017.03.005
  • Xia, J., Yang, L., Liu, Q., Peng, Q., Cheng, L. X., & Li, G. Y. (2019). Comparison of fatigue life prediction methods for solder joints under random vibration loading. Microelectronics Reliability, 95, 58–64. https://doi.org/10.1016/j.microrel.2019.02.008
  • Yaich, A., & El Hami, A. (2019). Multiaxial fatigue damage estimation of structures under random vibrations using Matsubara’s criterion. International Journal of Fatigue, 124, 253–264. https://doi.org/10.1016/j.ijfatigue.2019.03.003
  • Yaich, A., El Hami, A., Walha, L., & Haddar, M. (2017). Local multiaxial fatigue damage estimation for structures under random vibrations. Finite Elements in Analysis and Design, 132, 1–7. https://doi.org/10.1016/j.finel.2017.04.003
  • Zheng, R., Chen, H., Vandepitte, D., Gallas, S., & Zhang, B. (2019). Generation of sine on random vibrations for multi-axial fatigue tests. Mechanical Systems and Signal Processing, 126, 649–661. https://doi.org/10.1016/j.ymssp.2019.02.046
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ekrem Gülsevinçler 0000-0002-4787-6275

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Gülsevinçler, E. (2021). Random Vibration Fatigue Analysis of Car Roof Luggage Carrier. Avrupa Bilim Ve Teknoloji Dergisi(31), 92-103. https://doi.org/10.31590/ejosat.911120