Research Article
BibTex RIS Cite

Aralıklı Taleplerde Envanter Kontrolü için Genetik Algoritmaya Dayalı Bir Model

Year 2021, Issue: 32, 696 - 701, 31.12.2021
https://doi.org/10.31590/ejosat.1039251

Abstract

Talep tahmini, aralıklı talepler için zor bir çalışma alanıdır. Yedek parça talep yapıları da aralıklı bir talep yapısına sahiptir. Dolayısıyla bu alanda faaliyet gösteren firmalar için bu durum çeşitli sorunlara (elde tutma maliyeti veya kayıp satış maliyeti) neden olmaktadır. Aralıklı talepleri tahmin etmek doğal olarak zordur. Düzgün bir yapıya sahip talepler, işletmeler için daha uygun bir çalışma ortamı sağlar. İlgili talep ne kadar doğru tahmin edilirse, talep tahminine dayalı çalışmalar da o kadar sorunsuz yürütülür. Bu çalışmada, aralıklı talep yapısı ile rastgele oluşturulmuş bir talep serisi incelenmiştir. Aralıklı talebin tahmin zorluğu, Matlab'da yapılan bir tahminle gösterilmiştir. Bu zorluğun önüne geçebilmek için stok seviyeleri belirlenerek maliyetler minimize edilmeye çalışılmıştır. Aralıklı talepleri kullanarak stok seviyelerini belirleyen ve maliyetleri hesaplayarak ortalama karı hesaplayan bir envanter modeli önerilmiştir. İlgili model Matlab'da Genetik Algoritma ile çözülmüş ve sonuçlar kaydedilmiştir.

References

  • Babai, M., Chen, H., Syntetos, A., & Lengu, D. (2020). A compound-Poisson Bayesian approach for spare parts inventory forecasting. International Journal of Production Economics, 107954.
  • Babai, M. Z., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence. International Journal of Production Economics, 157, 212-219.
  • Boeringer, D. W., & Werner, D. H. (2004). Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on antennas and propagation, 52(3), 771-779.
  • Boutselis, P., & McNaught, K. (2019). Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context. International Journal of Production Economics, 209, 325-333.
  • Haddow, B., & Tufte, G. (2010). Goldberg DE Genetic Algorithms in Search, Optimization and Machine Learning.
  • Hasni, M., Babai, M., Aguir, M., & Jemai, Z. (2019). An investigation on bootstrapping forecasting methods for intermittent demands. International Journal of Production Economics, 209, 20-29.
  • Jiang, P., Huang, Y., & Liu, X. (2020). Intermittent demand forecasting for spare parts in the heavy-duty vehicle industry: a support vector machine model. International Journal of Production Research, 1-18.
  • Lolli, F., Gamberini, R., Regattieri, A., Balugani, E., Gatos, T., & Gucci, S. (2017). Single-hidden layer neural networks for forecasting intermittent demand. International Journal of Production Economics, 183, 116-128.
  • Özçift, B. (2018). Otomotiv Yedek Parça Taleplerinin Tahmini İçin Bulanık Kümeleme Model Önerisi.
  • Pastore, E., Alfieri, A., & Zotteri, G. (2019). An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry. International Journal of Production Economics, 209, 121-133.
  • Petropoulos, F., Kourentzes, N., & Nikolopoulos, K. (2016). Another look at estimators for intermittent demand. International Journal of Production Economics, 181, 154-161.
  • Saatçioğlu, D., & Özçakar, N. YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ. Beykoz Akademi Dergisi, 4(1), 1-32.
  • Stip, J., & Van Houtum, G.-J. (2020). On a method to improve your service BOMs within spare parts management. International Journal of Production Economics, 221, 107466.
  • Syntetos, A. (2001). Forecasting of intermittent demand. Brunel University Uxbridge,
  • Van der Auweraer, S., & Boute, R. (2019). Forecasting spare part demand using service maintenance information. International Journal of Production Economics, 213, 138-149.
  • Yuna, F., & Erkayman, B. (2019). A METAHEURISTIC APPROACH FOR AN INVENTORY MODEL WITH RANDOM DEMANDS. The 49th International Conference on Computers Industrial Engineering(CIE49)

A Genetic Algorithm-Based Model for Inventory Control in Intermittent Demands

Year 2021, Issue: 32, 696 - 701, 31.12.2021
https://doi.org/10.31590/ejosat.1039251

Abstract

Demand forecasting is a difficult field of study for intermittent demands. Spare parts demand structures also have an intermittent demand structure. Therefore, for companies operating in this field, this situation causes various problems (holding cost or cost of lost sale). Intermittent demands are inherently difficult to predict. Demands with a smooth structure provide a more suitable working environment for businesses. Because the more accurately the relevant demand is forecasted, the more smoothly the works that depend on demand forecasting are carried on. In this study, a randomly generated demand series with intermittent demand structure is examined. The estimation difficulty of intermittent demand is illustrated by an estimation made in Matlab. In order to avoid this difficulty, the costs were tried to be minimized by determining the inventory levels. An inventory model is proposed that determines stock levels using intermittent demands and calculates average profit by calculating costs. The related model was solved with Genetic Algorithm in Matlab and the results were recorded.

References

  • Babai, M., Chen, H., Syntetos, A., & Lengu, D. (2020). A compound-Poisson Bayesian approach for spare parts inventory forecasting. International Journal of Production Economics, 107954.
  • Babai, M. Z., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence. International Journal of Production Economics, 157, 212-219.
  • Boeringer, D. W., & Werner, D. H. (2004). Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on antennas and propagation, 52(3), 771-779.
  • Boutselis, P., & McNaught, K. (2019). Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context. International Journal of Production Economics, 209, 325-333.
  • Haddow, B., & Tufte, G. (2010). Goldberg DE Genetic Algorithms in Search, Optimization and Machine Learning.
  • Hasni, M., Babai, M., Aguir, M., & Jemai, Z. (2019). An investigation on bootstrapping forecasting methods for intermittent demands. International Journal of Production Economics, 209, 20-29.
  • Jiang, P., Huang, Y., & Liu, X. (2020). Intermittent demand forecasting for spare parts in the heavy-duty vehicle industry: a support vector machine model. International Journal of Production Research, 1-18.
  • Lolli, F., Gamberini, R., Regattieri, A., Balugani, E., Gatos, T., & Gucci, S. (2017). Single-hidden layer neural networks for forecasting intermittent demand. International Journal of Production Economics, 183, 116-128.
  • Özçift, B. (2018). Otomotiv Yedek Parça Taleplerinin Tahmini İçin Bulanık Kümeleme Model Önerisi.
  • Pastore, E., Alfieri, A., & Zotteri, G. (2019). An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry. International Journal of Production Economics, 209, 121-133.
  • Petropoulos, F., Kourentzes, N., & Nikolopoulos, K. (2016). Another look at estimators for intermittent demand. International Journal of Production Economics, 181, 154-161.
  • Saatçioğlu, D., & Özçakar, N. YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ. Beykoz Akademi Dergisi, 4(1), 1-32.
  • Stip, J., & Van Houtum, G.-J. (2020). On a method to improve your service BOMs within spare parts management. International Journal of Production Economics, 221, 107466.
  • Syntetos, A. (2001). Forecasting of intermittent demand. Brunel University Uxbridge,
  • Van der Auweraer, S., & Boute, R. (2019). Forecasting spare part demand using service maintenance information. International Journal of Production Economics, 213, 138-149.
  • Yuna, F., & Erkayman, B. (2019). A METAHEURISTIC APPROACH FOR AN INVENTORY MODEL WITH RANDOM DEMANDS. The 49th International Conference on Computers Industrial Engineering(CIE49)
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ferhat Yuna 0000-0001-8085-2841

Burak Erkayman 0000-0002-9551-2679

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Yuna, F., & Erkayman, B. (2021). A Genetic Algorithm-Based Model for Inventory Control in Intermittent Demands. Avrupa Bilim Ve Teknoloji Dergisi(32), 696-701. https://doi.org/10.31590/ejosat.1039251