Research Article
BibTex RIS Cite

Alüminyum Balpeteği Soğurucu Yüzeye Sahip bir Güneş Hava Kollektörünün HAD Analizi

Year 2021, Issue: 32, 484 - 490, 31.12.2021
https://doi.org/10.31590/ejosat.1039534

Abstract

Bu çalışmada, bir güneş hava kollektörü tasarımının hava çekiş yerine göre HAD (Hesaplamalı Akışkanlar Dinamiği) analizleri gerçekleştirilmiştir. Güneş hava kollektörünün verimini artırmak için balpeteği geometrisine sahip bir alüminyum soğurucu plaka kullanılmıştır. Isı transferi ve hava akış özelliklerini incelemek için merkez ve kenar hava çekişli güneş hava kollektörünün HAD analizleri yapılmış, farklı ışınım ve kütle debileri altında sistemin optimum çalışma aralıkları belirlenerek merkez ve kenar hava çekişli kollektörlerin tasarım karşılaştırılması yapılmıştır. Alüminyum balpeteği yapılı kollektörlerin, 600-1000 W/m² ışınım, 0.01-0.015 kg/s kütle debileri ve 300K sabit hava giriş sıcaklığı için termal analizleri gerçekleştirilmiş ve çıkan hava sıcaklık artış değerleri ve karşılık gelen termal verimlilikler bulunmuştur. Bulgular, kenar çekişli ve merkez çekişli güneş hava kollektöründen en yüksek hava sıcaklık çıkışının, 1000 W/m² ışınım ve 0.01 kg/s kütlesel debide sırasıyla 312K ve 310K olduğunu göstermiştir. En yüksek termal verimlilikler ise benzer şekilde her iki konfigürasyon için 600 W/m² ışınım ve 0,015 kg/s debide, kenar çekişli kollektör için yaklaşık %45, merkez çekişli kollektör için ise %42 olarak gerçekleşmiştir.

Supporting Institution

Necmettin Erbakan Üniversitesi BAP Birimi

Project Number

2113MER03003

Thanks

Bu çalışma Necmettin Erbakan Üniversitesi BAP Birimi tarafından 2113MER03003 No.lu proje ile desteklenmiştir. Ayrıca, bu makale YTB'nin 'Danışmanınla Tarihe Not Düş!' projesi kapsamında desteklenmiştir.

References

  • Parlamış, H., Özden, E., & Büker, M. S. (2021). Experimental performance analysis of a parabolic trough solar air collector with helical-screw tape insert: A comparative study. Sustainable Energy Technologies and Assessments, 47, 101562.
  • Buker, M. S., & Riffat, S. B. (2015). Building integrated solar thermal collectors–A review. Renewable and Sustainable Energy Reviews, 51, 327-346.
  • Kumar, R., & Chand, P. (2018). Performance prediction of extended surface absorber solar air collector with twisted tape inserts. Solar Energy, 169, 40-48.
  • Alkilinç, H., & Büker, M. S. (2021, June). Performance Assessment of Partially Shaded PV Modules With Microcracks. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • Zhao, Y., Meng, T., Jing, C., Hu, J., & Qian, S. (2020). Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector. Solar Energy, 204, 294-306.
  • Hu, J., & Zhang, G. (2019). Performance improvement of solar air collector based on airflow reorganization: A review. Applied Thermal Engineering, 155, 592-611.
  • Kabeel, A. E., Khalil, A., Shalaby, S. M., & Zayed, M. E. (2016). Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. Journal of Solar Energy Engineering, 138(5), 051004.
  • Sudhakar, P., & Cheralathan, M. (2019). Thermal performance enhancement of solar air collector using a novel V-groove absorber plate with pin-fins for drying agricultural products: an experimental study. Journal of Thermal Analysis and Calorimetry, 1-12.
  • Tuncer, A. D., Sözen, A., Khanlari, A., Amini, A., & Şirin, C. (2020). Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer. Solar Energy, 203, 304-316.
  • Gao, W., Lin, W., Liu, T., & Xia, C. (2007). Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 84(4), 425-441.
  • Priyam, A., & Chand, P. (2018). Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater. Renewable energy, 119, 690-702.
  • Zhao, Y., Meng, T., Jing, C., Hu, J., & Qian, S. (2020). Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector. Solar Energy, 204, 294-306.
  • Abuşka, M., Şevik, S., & Kayapunar, A. (2019). Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection. Solar Energy Materials and Solar Cells, 195, 299-308.
  • Zulkifle, I., Alwaeli, A. H., Ruslan, M. H., Ibarahim, Z., Othman, M. Y. H., & Sopian, K. (2018). Numerical investigation of V-groove air-collector performance with changing cover in Bangi, Malaysia. Case studies in thermal engineering, 12, 587-599.
  • Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., ... & Sopian, K. (2019). Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renewable and Sustainable Energy Reviews, 100, 44-51.
  • Kareem, M. W., Habib, K., Sopian, K., & Irshad, K. (2016). Performance evaluation of a novel multi-pass solar air heating collector. Procedia engineering, 148, 638-645.
  • Afshari, F., Zavaragh, H. G., Sahin, B., Grifoni, R. C., Corvaro, F., Marchetti, B., & Polonara, F. (2018). On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers. Mathematics and Computers in Simulation, 152, 51-68.
  • Sözen, A., Kazancıoğlu, F. Ş., Tuncer, A. D., Khanlari, A., Bilge, Y. C., & Gungor, A. (2021). Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool. Solar Energy, 217, 328-341.
  • Ahsan, M. (2014). Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment. Beni-Suef University journal of basic and applied sciences, 3(4), 269-277.
  • Rajarajeswari, K., Alok, P., & Sreekumar, A. (2018). Simulation and experimental investigation of fluid flow in porous and non-porous solar air heaters. Solar Energy, 171, 258-270.
  • Alic, E., Das, M., & Akpinar, E. K. (2021). Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector. Journal of Cleaner Production, 311, 127518.
  • Solar Air Collector, Solar Venti, SV3 Air - Up to 25m² - SolarVenti Ltd. (17.11.2021)
  • Kumar, A., & Layek, A. (2019). Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. Journal of Cleaner Production, 232, 617-628.

CFD Analysis of a Solar Air Collector with Aluminum Honeycomb Absorber Plate

Year 2021, Issue: 32, 484 - 490, 31.12.2021
https://doi.org/10.31590/ejosat.1039534

Abstract

In this study, CFD (Computational Fluid Dynamics) analyses of two different solar air collector configurations according to the air intake spot were performed. An aluminum absorber plate with honeycomb geometry is used to increase the efficiency of the solar air collector. In order to examine the heat transfer and air flow properties, simulation analyses were carried out on the solar air collector with air-draught from the center and side. The optimum operating ranges of the system under different radiation and mass flow rates were determined and the design comparison of the center and side aspirated collectors was performed. Thermal analysis of collectors with aluminum honeycomb absorber plate were carried out for 600-1000 W/m² radiation, 0.01-0.015 kg/s mass flow rates and constant 300K inlet air temperature. Temperature rise in outlet air and corresponding thermal efficiencies were found. The findings show that the highest temperature output is approximately 312 and 310K at 1000 W/m² irradiance and 0.01 kg/s mass flow rate for edge and center air draught type solar air collectors, respectively. The highest thermal efficiencies, on the other hand, were approximately 45% for the side air intake collector and 42% for the center air intake collector both at 600 W/m² irradiance and 0.015 kg/s flow rate for both configurations.

Project Number

2113MER03003

References

  • Parlamış, H., Özden, E., & Büker, M. S. (2021). Experimental performance analysis of a parabolic trough solar air collector with helical-screw tape insert: A comparative study. Sustainable Energy Technologies and Assessments, 47, 101562.
  • Buker, M. S., & Riffat, S. B. (2015). Building integrated solar thermal collectors–A review. Renewable and Sustainable Energy Reviews, 51, 327-346.
  • Kumar, R., & Chand, P. (2018). Performance prediction of extended surface absorber solar air collector with twisted tape inserts. Solar Energy, 169, 40-48.
  • Alkilinç, H., & Büker, M. S. (2021, June). Performance Assessment of Partially Shaded PV Modules With Microcracks. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • Zhao, Y., Meng, T., Jing, C., Hu, J., & Qian, S. (2020). Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector. Solar Energy, 204, 294-306.
  • Hu, J., & Zhang, G. (2019). Performance improvement of solar air collector based on airflow reorganization: A review. Applied Thermal Engineering, 155, 592-611.
  • Kabeel, A. E., Khalil, A., Shalaby, S. M., & Zayed, M. E. (2016). Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. Journal of Solar Energy Engineering, 138(5), 051004.
  • Sudhakar, P., & Cheralathan, M. (2019). Thermal performance enhancement of solar air collector using a novel V-groove absorber plate with pin-fins for drying agricultural products: an experimental study. Journal of Thermal Analysis and Calorimetry, 1-12.
  • Tuncer, A. D., Sözen, A., Khanlari, A., Amini, A., & Şirin, C. (2020). Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer. Solar Energy, 203, 304-316.
  • Gao, W., Lin, W., Liu, T., & Xia, C. (2007). Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 84(4), 425-441.
  • Priyam, A., & Chand, P. (2018). Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater. Renewable energy, 119, 690-702.
  • Zhao, Y., Meng, T., Jing, C., Hu, J., & Qian, S. (2020). Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector. Solar Energy, 204, 294-306.
  • Abuşka, M., Şevik, S., & Kayapunar, A. (2019). Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection. Solar Energy Materials and Solar Cells, 195, 299-308.
  • Zulkifle, I., Alwaeli, A. H., Ruslan, M. H., Ibarahim, Z., Othman, M. Y. H., & Sopian, K. (2018). Numerical investigation of V-groove air-collector performance with changing cover in Bangi, Malaysia. Case studies in thermal engineering, 12, 587-599.
  • Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., ... & Sopian, K. (2019). Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renewable and Sustainable Energy Reviews, 100, 44-51.
  • Kareem, M. W., Habib, K., Sopian, K., & Irshad, K. (2016). Performance evaluation of a novel multi-pass solar air heating collector. Procedia engineering, 148, 638-645.
  • Afshari, F., Zavaragh, H. G., Sahin, B., Grifoni, R. C., Corvaro, F., Marchetti, B., & Polonara, F. (2018). On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers. Mathematics and Computers in Simulation, 152, 51-68.
  • Sözen, A., Kazancıoğlu, F. Ş., Tuncer, A. D., Khanlari, A., Bilge, Y. C., & Gungor, A. (2021). Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool. Solar Energy, 217, 328-341.
  • Ahsan, M. (2014). Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment. Beni-Suef University journal of basic and applied sciences, 3(4), 269-277.
  • Rajarajeswari, K., Alok, P., & Sreekumar, A. (2018). Simulation and experimental investigation of fluid flow in porous and non-porous solar air heaters. Solar Energy, 171, 258-270.
  • Alic, E., Das, M., & Akpinar, E. K. (2021). Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector. Journal of Cleaner Production, 311, 127518.
  • Solar Air Collector, Solar Venti, SV3 Air - Up to 25m² - SolarVenti Ltd. (17.11.2021)
  • Kumar, A., & Layek, A. (2019). Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. Journal of Cleaner Production, 232, 617-628.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sharif Eyyublu 0000-0002-9700-5187

Mahmut Sami Büker 0000-0002-0896-2293

Project Number 2113MER03003
Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Eyyublu, S., & Büker, M. S. (2021). Alüminyum Balpeteği Soğurucu Yüzeye Sahip bir Güneş Hava Kollektörünün HAD Analizi. Avrupa Bilim Ve Teknoloji Dergisi(32), 484-490. https://doi.org/10.31590/ejosat.1039534