Review
BibTex RIS Cite

Encapsulation Techniques and Controlled Release

Year 2021, Issue: 32, 640 - 648, 31.12.2021
https://doi.org/10.31590/ejosat.1039736

Abstract

Encapsulation is the protection of at least one active ingredient by at least one kind of coating material, provided that it is released under appropriate conditions and at the desired dose. The used material must be biocompatible and biodegradable, as well as ensuring the stability of the active ingredient. Controlled release systems have numerous advantages; such as, enhanced efficacy, high stability against enzymatic etc. degradation of encapsulated or immobilized components, reduced toxicity, and easy application. The release systems can be in different forms such as sphere, capsule, rod, membrane, slab, etc. Its dimensions, on the other hand, can be of different sizes due to the purpose of use; it can vary between nano, micro or milli levels. These forms, which are generally called micro- and nanoparticles; can be carriers of active ingredients such as drugs, vitamins, minerals, volatile aromatic compounds and various nutritional supplements called nutraceuticals. The main goal in encapsulation is the preservation of sensitive components and their release over time to a set extent. There are different techniques commonly used for the encapsulation of active substances into micro or nanoparticles. These are the techniques; thermal phase separation (coacervation), spray cooling and freezing, melt dispersion, solvent evaporation, fluidized bed coating, spray drying, homogenization of water and organic phases, rotary suspension separation, extrusion and inclusion complex, etc. The aim of this review is to give general information about the controlled release of active ingredients with different encapsulation techniques.

References

  • Açu, M., Kınık, Ö., & Yerlikaya, O., 2014, Mikroenkapsülasyon ve Süt Teknolojisindeki Yeri, Akademik Gıda, 12(1), 97-107.
  • Allahyari, M. & Mohit E., 2016, Peptide/protein vaccine delivery system based on PLGA particles, Hum Vaccines Immunother, 12(3), 806-828.
  • Alsaheb, R.A.A,, Aladdin, A., Othman, NZ., Malek, R.A., Leng, O.M., Aziz, R.& Enshasy, H., 2015, Recent applications of polylactic acid in pharmaceutical and medical industries, J Chem Pharm Res., 7, 51-63.
  • André-Abrant, A., Taverdet, J.-L. & Jay, J., 2001, Microencapsulation par évaporation de solvant, Eur. Polym. J, 37, 955–967.
  • Astete, C.E., Kumar, C.S.S.R. & Sabliov, C.M., 2007, Size control of poly(d,l-lactide-co-glycolide) and poly(d,l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique, Colloids Surf. A, 299, 209–216.
  • Astete, C.E., & Sabliov, C.M., 2006, Synthesis and Characterization of PLGA Nanoparticles. J. Biomaterials Sci Polymer Ed., 17, 247-289.
  • Atuah, K.N., Walter, E., Merkle, H.P. & Alpar, H.O., 2003, Encapsulation of plasmid DNA in PLGA-stearylamine microspheres: a comparison of solvent evaporation and spray-drying methods, J. Microencapsul, 20 (3), 387–399.
  • Aukunuru, J.V., Ayalasomayajula, S.P. & Kompella, U.B., 2003, Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligo-nucleotide in human retinal pigment epithelial cells, Journal of Pharmacy and Pharmacology, 55(9), 1199-1206.
  • Bahl, Y. & Sah, H., 2000, Dynamic changes in size distribution of emulsion droplets during ethyl acetate-based microencapsulation process, AAPS PharmSciTech., 1, 41-49.
  • Bayat, M. & Nasri, S., 2019, Injectable microgel-hydrogel composites “plum pudding gels”: new system for prolonged drug delivery, Nanomaterials for Drug Delivery and Therapy, In: Grumezescu, A.M.(ed.), Bölüm 12, Elsevier, New York, ISBN: 978-0-12-816505-8, 343-372.
  • Berkland, C., King, M., Cox, A., Kim, K.K. & Pack, D.W., 2002, Precise control of PLG microsphere size provides enhanced control of drug release rate, Journal of Controlled Release, 82(1), 137–147.
  • Besenbache, F., Sutherland, D.S. & Hovgaard, M.B., 2007, From nanoscience to nanotechnology: utilizing the nanoscale, Toxicol. Lett., 172 (1), S34.
  • Bilati, U., Allémann, E. & Doelker, E., 2005, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharmacol., 24, 67–75.
  • Bodmeier, R., Wang, H. & Hermann, J., 1994, Microencapsulation of chlorpheniraminemaleate, a drug with intermediate solubility properties, by a non-aqueous solvent evaporation technique, STP Pharma. Sci., 4 (4), 275–281.
  • Champion, J.A., Katare, Y.K. & Mitragotri, S., 2007, Making polymeric micro- and nanoparticles of complex shapes, Proc. Natl. Acad. Sci. USA, 104(29), 11901–11904. Cun, D., Jensen, D.K., Maltesen, M.J., Bunker, M., Whiteside, P., Scurr, D., Foged, C. & Nielsen, H.M., 2011, High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization, Eur J Pharm Biopharm, 77(1), 26-35.
  • Feczko´, T., To´th, J., Do´sa, G. & Gyenis, J., 2011, Optimization of protein encapsulation in PLGA nanoparticles, Chem Eng Process, 50(8),757-765.
  • Feng, S.S., Mu, L., Yin Win, K. & Huang, G., 2004, Nanoparticles of biodegradable polymers for clinical administration of paclitaxel, Curr. Med. Chem., 11, 413–424.
  • Ferrari, M., 2005, Cancer nanotechnology: Opportunities and challenges, Nature Reviews Cancer, 5(3), 161–171.
  • Finotelli, P.V. & Rocha-Leao, M.H.M., 2005, Microencapsulation of ascorbic acid in maltodextrin and capsul using spray-drying, 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering, 14-18 Ağustos 2005, Rio de Janeiro, Brezilya, 1–11.
  • Freiberg, S & Zhu, X.X., 2004, Polymer microspheres for controlled drug release, International Journal of Pharmaceutics, 282, 1-18.
  • Freytag, T., Dashevsky, A., Tillman, L., Hardee, G.E. & Bodmeier, R., 2000, Improvement of the encapsulation efficiency of oligonuclleotide-containing biodegradable microspheres, J. Contr. Rel, 69, 197–207.
  • Fukushima, K., Feijoo, J.L. & Yang, M-C., 2013, Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend, Eur Polym J, 49(3), 706-717.
  • Gaspar, R. & Duncan, R., 2009, Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics, Adv Drug Deliv Rev ., 61(13), 1220-1231.
  • George, P.M., Lyckman, A.W., LaVan, D.A., Hegde, A., Leung, Y., vd., 2005, Fabrication and biocompatibility of polypyr¬role implants suitable for neural prosthetics, Biomaterials, 26(17), 3511–3519.
  • Govender, T., Stolnik, S., Garnett, M.C., Illum, L. & Davis, S.S., 1999, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water-soluble drug, J. Control. Rel., 57, 171–185.
  • Hermans, K., Van den Plas, D., Schreurs, E., Weyenberg, W. & Ludwig, A., 2014, Cytotoxicity and anti-inflammatory activity of cyclosporine A loaded PLGA nanoparticles for ocular use, Die Pharm, 69(1), 32-37.
  • Herrmann, J., & Bodmeier, R., 1998, Biodegradable somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods, Eur. J. Pharm. Biophar,. 45, 75–82.
  • Izumikawa, S., Yoshioka, S., Aso, Y., & Takeda, Y., 1991, Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate, J. Contr. Rel. 15, 133–140.
  • Jain, R.A., 2000, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, 21(23), 2475–2490.
  • Jeong, J.C., Jaeyoung, L. & Cho, K., 2003, Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres, Journal of Controlled Release, 92, 249-258.
  • Kaihara, S., Matsumura, S., Mikos, A.G., & Fisher, J.P., 2007, Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization, Nat Protoc.,2(11), 2767-2771.
  • Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., et al., 2004, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22(1), 93–97.
  • Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U.S., 2010, Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives, Angew Chem., 49(36), 6288-6308.
  • Koç, M., Sakin, M., & Kaymak-Ertekin, F., 2010, Mikroenkapsülasyon ve Gıda Teknolojisinde Kullanımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(1), 77-86.
  • Kost, J. & Langer, R., 2012, Responsive polymeric delivery systems, Adv. Drug Deliv. Rev., 64, 327-341.
  • Kozubek, A., Gubernator, J., Przeworska, E., & Stasiuk, M., 2001, Liposomal drug delivery, a novel approach: PLARosomes, Acta Biochim. Pol., 47 (3), 639–649.
  • Kumar, R.M.N.V., 2000, Nano and microparticles as controlled drug delivery devices, J. Pharm. Pharm. Sci., 3 (2), 234–258.
  • Kumar, R.M.N.V., Bakowsky, U. & Lehr, C.M., 2004, Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials, 25, 1771–1777.
  • Kwon, H.Y., Lee, J.Y., Choi, S.W., Jang, Y., & Kim, J.H., 2001, Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method, Colloids Surf. A, 182, 123–130.
  • Lam, C.X.F., Teoh, S.H. & Hutmacher, D.W., 2007, Comparison of the degradation of polycaprolactone and polycaprolactone (b-tricalcium phosphate) scaffolds in alkaline medium, Polym Int, 56(6), 718-728.
  • Langer, R., 1993, Polymer-controlled drug delivery systems, American Chemical Society, 26, 10, 537-542.
  • Langer, R., 2001, Perspectives: drug delivery, Drugs on target Science, 293, 58–59.
  • Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C., Chang, Y.H., Lee, K.H., & Kim, J.D., 2005, Magnetic enhancement of iron oxide nanoparticles encapsulated with poly(d,l-lactide-co-glycolide), Colloids Surf. A, 255, 19–25.
  • Legrand, P., Barratt, G., Mosqueira, V., Fessi, H., & Devissaguet, J.D., 1999, Polymeric nanocapsules as drug delivery systems, A review. S. T. P., Pharma. Sci., 9, 411–418.
  • Li, M., Rouaud, O., &Poncelet, D., 2008, Microencapsulation by solvent evaporation: State of the art for process engineering approaches, International Journal of Pharmaceutics, 363(1-2), 26–39.
  • Lian, T. & Ho, R.J.Y., 2001, Trends and developments in liposome drug delivery systems, J. Pharmceut. Sci., 90 (6), 667–680.
  • Liu, K.L., Widjaja, E., Huang, Y., Ng, X.W., Loo, S.C.J., Boey, F.Y.C., & Venkatraman, S.S., 2011, A new insight for an old system: protein-PEG colocalization in relation to protein release from PCL/PEG blends, Mol Pharm., 8(6), 2173-2182.
  • Liu, M. & Frechet, J.M., 1999, Designing dendrimers for drug delivery, Pharm. Sci. Technol. Today 10, 393–401.
  • Mathiowitz, E. & Langer, R., 1987, Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation, J. Control. Rel., 5 (1), 13–22.
  • Medina, O.P., Zhu, Y., & Kairemo, K., 2004, Targeted liposomal drug delivery in cancer, Curr. Pharm. Des., 10 (24), 2981–2989.
  • Miller, R.E. & Anderson, J.L., 1964, Encapsulation process and its products, US Patent, 3,155,590.
  • Mirakabad, F. S.T., Nejati-Koshki, K., Akbarzadeh, A., Yamchi, M.R., Milani, M., Zarghami, N., Zeighamian, V., Rahimzadeh, A., Alimohammadi, S., & Hanifehpour, Y., 2014, PLGA-based nanoparticles as cancer drug delivery systems, Asian Pac J Cancer Prev., 15(2), 517-535.
  • Moghimi, S.M., Hunter, A.C., & Murray, J.C., 2005, Nanomedicine: current status and future prospects, FASEB J., 19, 311–330.
  • Mu, L. & Feng, S.S., 2003, A novel controlled release formulation for the anticancer drug paclitaxel (Taxol(R)): PLGA nanoparticles containing vitamin E TPGS, J Control Release, 86(1),33-48.
  • Nafee, N., Taetz, S., Schneider, M., Schaefer, U.F., & Lehr, C.-M., 2007, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides, Nanomedicine, 3 (3), 173–183.
  • Nagavarma, B.V.N., Yadav, H.K.S., Ayaz, A., Vasudha, L.S., & Shivakumar, H.G., 2012, Different techniques for preparation of polymeric nanoparticles- a review, Asian J Pharm Clin Res.,5(3),16-23.
  • O’Donnell, P.B. & McGinity, J.W., 1997, Preparation of microspheres by the solvent evaporation technique, Adv. Drug Deliv. Rev., 28 (1), 25–42.
  • Oshimura, M., Takasu, A., & Nagata, K., 2009, Controlled ring-opening polymerization of ε-caprolactone using polymer-supported scandium trifluoromethanesulfonate in organic solvent and ionic liquids, Macromolecules, 42(8), 3086-3091.
  • Pantazis, P., Dimas, K., Wyche, J.H., Anant, S., Houchen, C.W., Panyam, J., & Ramanujam, R.P., 2012, Preparation of siRNA-encapsulated PLGA nanoparticles for sustained release of siRNA and evaluation of encapsulation efficiency, Meth Mol Biol (Clifton NJ), 906, 311-319.
  • Paolino, D., Sinha, P., Fresta, M., & Ferrari, M., 2006, Drug delivery systems, Encyclopedia of Medical Devices and Instrumentation.
  • Park, K., & Mrsny, R.J., 2000, Bölüm 1, Controlled Drug Delivery: Present and Future, In Controlled Drug Delivery; ACS Symposium Series, American Chemical Society, Washington.
  • Prabha, S. & Labhasetwar, V., 2004, Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells, Mol. Pharmacol., 1, 211–219.
  • Raja, M.M., Lim, P. Q., Wong, Y. S., Xiong, G. M., Zhang, Y., Venkatraman, S., & Huang, Y., 2019, Polymeric Nanomaterials: Methods of Preparation and Characterization, Nanocarriers for Drug Delivery, In: Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S.(ed.), Bölüm 18, Elsevier, New York, ISBN: 978-0-12-814033-8, 557-653.
  • Ratnam, V.D., Ankola, D., Bhardwaj, V., Sahana, D.K., & Ravi Kumar, M.N.V., 2006, Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective, J. Control. Rel., 113 (3), 189–207.
  • Risch, S.J. & Reineccius, G.A., 1995, Encapsulation: overview of uses and techniques, Encapsulation and Controlled Release of Food Ingredients, Bölüm 1, American Chemical Society, Washington, 2-7.
  • Rivera, P.A., Martinez-Oharriz, M.C., Rubio, M., Irache, J.M., & Espuelas, S., 2004, Fluconazole encapsulation in PLGA microspheres by spray-drying, J. Microencapsul., 21 (2), 203–211.
  • Rosca, I.D., Watari, F., & Uo, M., 2004, Microparticle formation and its mechanism in single and double emulsion solvent evaporation, J. Control. Rel., 99 (2), 271–280.
  • Roullin, V.G., Deverre, J.R., Lemaire, L., Hindre´, F., Venier-Julienne, M.C., Vienet, R., & Benoit, J.P., 2002, Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres, Eur J Pharm Biopharm., 53(3), 293-299.
  • Sah, H., 1997, Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres, J. Contr. Rel., 47, 233–245.
  • Sahoo, S.K. & Labhasetwar, V., 2005, Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention, Mol. Pharmacol., 2, 373–383.
  • Sahoo, S.K., Parveen, S., & Panda, J.J., 2007, The present and future of nanotechnology in human health care, Nanomedicine, 3 (1), 20–31.
  • Seville, P.C., 2007, Spray-dried powders for pulmonary drug delivery, Crit. Rev. Therapeut. Drug Carrier Syst.,24 (4), 307–360.
  • Song, K.C., Lee, H.S., Choung, I.Y., Cho, K.I., Ahn, Y., & Choi, E.J., 2006, The effect type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles, Colloids Surf. A, 276, 162–167.
  • Stevanović, M., 2017, Polymeric micro- and nanoparticles for controlled and targeted drug delivery, Nanostructures for Drug Delivery, In: Andronescu, E., Grumezescu, A.M.(ed.), Bölüm 11, Elsevier, New York, ISBN: 978-0-323-46143-6, 355-378.
  • Stevanovic´, M. & Uskokovic´, D., 2009a, Poly(d,l-lactide-co-glycolide) for controlled drug delivery of vitamins, Curr. Nanosci, 5 (1), 1–15.
  • Stevanovic´, M. & Uskokovic´, D., 2009b, Influence of different degradation medium on release of ascorbic acid from poly(d,l-lactide-co-glycolide) nano- and microspheres, Russ. J. Phys. Chem. A, 83 (9), 1457–1460.
  • Stevanovic´, M.M., Jordovic´, B., & Uskokovic´, D.P., 2007a, Preparation and characterization of poly(d,l-lactide-co-glycolide) nanoparticles containing ascorbic acid, J. Biomed. Biotechnol., 8.
  • Stevanovic´, M., Savic´, J., Jordovic´, B., & Uskokovic´, D., 2007b, Fabrication, in vitro degradation and the release behaviours of poly(d,l-lactide-co-glycolide) nanospheres containing ascorbic acid, Colloids Surf. B, 59 (2), 215–223.
  • Stupar, P., Pavlovic´, V., Nunic´, J., Cundricˇ, S., Filipicˇ, M., & Stevanovic´, M., 2014, Development of lyophilized spherical particles of poly(epsilon-caprolactone) and examination of their morphology, cytocompatibility and influence on the formation of reactive oxygen species, J. Drug Deliv. Sci. Technol., 24 (2), 191–197.
  • Sumer, B. & Gao, J., 2008, Theranostic nanomedicine for cancer, Nanomedicine, 3 (2), 137–140.
  • Takashima, Y., Saito, R., Nakajima, A., Oda, M., Kimura, A., Kanazawa, T., & Okada, H., 2007, Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres, Int. J. Pharm., 343 (1–2), 262–269.
  • Tan, B.H., Muiruri, J.K., Li, Z., & He, C., 2016, Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide, ACS Sustainable Chem Eng., 4(10), 5370-5391.
  • Thomasin, C., Merkle, H.P., & Gander, B., 1998a, Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 2. Parameters determining microsphere formation, J. Pharmceut. Sci., 87 (3), 269–275.
  • Thomasin, C., Nam- Tran, H., Merkle, H.P., & Gander, B., 1998b, Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations, J. Pharm. Sci., 87 (3), 259–268.
  • Uddin, M.S., Hawlader, M.N.A., Zhu, H.J., 2001, Microencapsulation of ascorbic acid: effect of process variables on product characteristics, J. Microencapsul, 18 (2), 199–209.
  • Ulery, B.D., Nair, L.S., & Laurencin, C.T., 2011, Biomedical applications of biodegradable Polymer, J Polym Sci B Polym Phys., 49(12), 832-864.
  • Vilar, G., Tulla-Puche, J., & Albericio, F., 2012, Polymers and drug delivery systems, Curr. Drug. Deliv., 9(4), 367-394.
  • Wieland-Berghausen, S., Schote, U., Frey, M., & Schmidt, F., 2002, Comparison of microencapsulation techniques for the water-soluble drugs nitenpyram and clomipramine HCl, J. Control. Rel., 85 (1–3), 35–43.
  • Wong, S.Y., Pelet, J.M., & Putnam, D., 2007, Polymer systems for gene delivery-past, present and future, Prog. Polym. Sci., 32 (8–9), 799–837.
  • Woodruff, M.A. & Hutmacher, D.W., 2010, The return of a forgotten polymer Polycaprolactone in the 21st century, Progress in Polymer Science, 35(10), 1217-1256.
  • Yalabik-Kas, H.S., 1983, Microencapsulation and in vitro dissolution of oxazepam from ethylcellulose microcapsules, Drug Dev. Ind. Pharm., 9 (6), 1047–1060.
  • Yilgor, P., Hasirci, N., & Hasirci, V., 2010, Sequential BMP-2/BMP-7 Delivery from Polyester Nanocapsules, Journal of Biomedical Materials Research Part A, 93(2), 528-536.
  • Yoo, H.S., 2006, Preparation of biodegradable polymeric hollow microspheres using O/O/W emulsion stabilized by Labrafil, Colloids Surf. B, 52, 47–51.
  • Yoshiyuki, K., Hirata, G., & Samejima, M., 1983, Studies on microcapsules II: influence of molecular weight of ethylcellulose in the microencapsulation of ascorbic acid, Chem. Pharmaceut. Bull., 31, 4476–4482.
  • Zuidam, N.J. & Nedovic, V., 2010, Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them, Encapsulation Technologies for Active Food Ingredients and Food Processing, In: Zuidam, N.J. ve Shimoni, E. (ed.), Bölüm 2, Springer, New York, ISBN: 978-1-4419-1008-0, 3-29.

Enkapsülasyon Teknikleri ve Kontrollü Salım

Year 2021, Issue: 32, 640 - 648, 31.12.2021
https://doi.org/10.31590/ejosat.1039736

Abstract

Enkapsülasyon, en az bir aktif bileşenin en az bir çeşit kaplama materyali tarafından uygun koşullarda ve istenilen dozda salınması koşuluyla koruma altına alınmasıdır. Kullanılacak malzemenin biyouyumlu ve biyobozunur olması yanı sıra aktif bileşenin stabilitesini sağlıyor olması da gereklidir. Kontrollü salım sistemleri; gelişmiş etkinlik, enkapsüle veya immobilize edilmiş bileşenlerin enzimatik vb. degradasyonuna karşı yüksek stabiliteye sahip olması, azaltılmış toksisite, kolay uygulama gibi sayısız avantajlara sahiptirler. Salım sistemlerinin formu küre, kapsül, çubuk, membran, slab gibi farklı biçimlerde olabilmektedir. Boyutları ise kullanım amacı sebebiyle farklı ölçülerde olabilmekte; nano, mikro veya mili seviyeler arasında değişebilmektedir. Genel olarak mikro- ve nanoparçacıklar olarak isimlendirilen bu formlar; ilaçlar, vitaminler, mineraller, uçucu aromatik bileşikler ve nutrasötik olarak adlandırılan çeşitli besin takviyeleri gibi aktif bileşenlerin taşıyıcısı olabilmektedirler. Enkapsülasyonda asıl hedef hassas bileşenlerin korunması ve zamanla ayarlanan ölçüde salınmasıdır. Mikro veya nanopartiküller içindeki aktif maddelerin enkapsülasyonu için yaygın olarak kullanılan farklı teknikler mevcuttur. Bunlar; termal faz ayırma (koaservasyon), sprey soğutma ve dondurma, eriyik dağılımı, çözücü buharlaşması, akışkan yatak kaplaması, sprey kurutma, su ve organik fazların homojenizasyonu, dönel süspansiyon ayırma, ekstrüzyon ve inklüzyon kompleksi vb. tekniklerdir. Bu derlemenin amacı farklı enkapsülasyon teknikleri ile aktif bileşenlerin kontrollü salımı hakkında genel bilgiler vermektir.

References

  • Açu, M., Kınık, Ö., & Yerlikaya, O., 2014, Mikroenkapsülasyon ve Süt Teknolojisindeki Yeri, Akademik Gıda, 12(1), 97-107.
  • Allahyari, M. & Mohit E., 2016, Peptide/protein vaccine delivery system based on PLGA particles, Hum Vaccines Immunother, 12(3), 806-828.
  • Alsaheb, R.A.A,, Aladdin, A., Othman, NZ., Malek, R.A., Leng, O.M., Aziz, R.& Enshasy, H., 2015, Recent applications of polylactic acid in pharmaceutical and medical industries, J Chem Pharm Res., 7, 51-63.
  • André-Abrant, A., Taverdet, J.-L. & Jay, J., 2001, Microencapsulation par évaporation de solvant, Eur. Polym. J, 37, 955–967.
  • Astete, C.E., Kumar, C.S.S.R. & Sabliov, C.M., 2007, Size control of poly(d,l-lactide-co-glycolide) and poly(d,l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique, Colloids Surf. A, 299, 209–216.
  • Astete, C.E., & Sabliov, C.M., 2006, Synthesis and Characterization of PLGA Nanoparticles. J. Biomaterials Sci Polymer Ed., 17, 247-289.
  • Atuah, K.N., Walter, E., Merkle, H.P. & Alpar, H.O., 2003, Encapsulation of plasmid DNA in PLGA-stearylamine microspheres: a comparison of solvent evaporation and spray-drying methods, J. Microencapsul, 20 (3), 387–399.
  • Aukunuru, J.V., Ayalasomayajula, S.P. & Kompella, U.B., 2003, Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligo-nucleotide in human retinal pigment epithelial cells, Journal of Pharmacy and Pharmacology, 55(9), 1199-1206.
  • Bahl, Y. & Sah, H., 2000, Dynamic changes in size distribution of emulsion droplets during ethyl acetate-based microencapsulation process, AAPS PharmSciTech., 1, 41-49.
  • Bayat, M. & Nasri, S., 2019, Injectable microgel-hydrogel composites “plum pudding gels”: new system for prolonged drug delivery, Nanomaterials for Drug Delivery and Therapy, In: Grumezescu, A.M.(ed.), Bölüm 12, Elsevier, New York, ISBN: 978-0-12-816505-8, 343-372.
  • Berkland, C., King, M., Cox, A., Kim, K.K. & Pack, D.W., 2002, Precise control of PLG microsphere size provides enhanced control of drug release rate, Journal of Controlled Release, 82(1), 137–147.
  • Besenbache, F., Sutherland, D.S. & Hovgaard, M.B., 2007, From nanoscience to nanotechnology: utilizing the nanoscale, Toxicol. Lett., 172 (1), S34.
  • Bilati, U., Allémann, E. & Doelker, E., 2005, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharmacol., 24, 67–75.
  • Bodmeier, R., Wang, H. & Hermann, J., 1994, Microencapsulation of chlorpheniraminemaleate, a drug with intermediate solubility properties, by a non-aqueous solvent evaporation technique, STP Pharma. Sci., 4 (4), 275–281.
  • Champion, J.A., Katare, Y.K. & Mitragotri, S., 2007, Making polymeric micro- and nanoparticles of complex shapes, Proc. Natl. Acad. Sci. USA, 104(29), 11901–11904. Cun, D., Jensen, D.K., Maltesen, M.J., Bunker, M., Whiteside, P., Scurr, D., Foged, C. & Nielsen, H.M., 2011, High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization, Eur J Pharm Biopharm, 77(1), 26-35.
  • Feczko´, T., To´th, J., Do´sa, G. & Gyenis, J., 2011, Optimization of protein encapsulation in PLGA nanoparticles, Chem Eng Process, 50(8),757-765.
  • Feng, S.S., Mu, L., Yin Win, K. & Huang, G., 2004, Nanoparticles of biodegradable polymers for clinical administration of paclitaxel, Curr. Med. Chem., 11, 413–424.
  • Ferrari, M., 2005, Cancer nanotechnology: Opportunities and challenges, Nature Reviews Cancer, 5(3), 161–171.
  • Finotelli, P.V. & Rocha-Leao, M.H.M., 2005, Microencapsulation of ascorbic acid in maltodextrin and capsul using spray-drying, 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering, 14-18 Ağustos 2005, Rio de Janeiro, Brezilya, 1–11.
  • Freiberg, S & Zhu, X.X., 2004, Polymer microspheres for controlled drug release, International Journal of Pharmaceutics, 282, 1-18.
  • Freytag, T., Dashevsky, A., Tillman, L., Hardee, G.E. & Bodmeier, R., 2000, Improvement of the encapsulation efficiency of oligonuclleotide-containing biodegradable microspheres, J. Contr. Rel, 69, 197–207.
  • Fukushima, K., Feijoo, J.L. & Yang, M-C., 2013, Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend, Eur Polym J, 49(3), 706-717.
  • Gaspar, R. & Duncan, R., 2009, Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics, Adv Drug Deliv Rev ., 61(13), 1220-1231.
  • George, P.M., Lyckman, A.W., LaVan, D.A., Hegde, A., Leung, Y., vd., 2005, Fabrication and biocompatibility of polypyr¬role implants suitable for neural prosthetics, Biomaterials, 26(17), 3511–3519.
  • Govender, T., Stolnik, S., Garnett, M.C., Illum, L. & Davis, S.S., 1999, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water-soluble drug, J. Control. Rel., 57, 171–185.
  • Hermans, K., Van den Plas, D., Schreurs, E., Weyenberg, W. & Ludwig, A., 2014, Cytotoxicity and anti-inflammatory activity of cyclosporine A loaded PLGA nanoparticles for ocular use, Die Pharm, 69(1), 32-37.
  • Herrmann, J., & Bodmeier, R., 1998, Biodegradable somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods, Eur. J. Pharm. Biophar,. 45, 75–82.
  • Izumikawa, S., Yoshioka, S., Aso, Y., & Takeda, Y., 1991, Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate, J. Contr. Rel. 15, 133–140.
  • Jain, R.A., 2000, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, 21(23), 2475–2490.
  • Jeong, J.C., Jaeyoung, L. & Cho, K., 2003, Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres, Journal of Controlled Release, 92, 249-258.
  • Kaihara, S., Matsumura, S., Mikos, A.G., & Fisher, J.P., 2007, Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization, Nat Protoc.,2(11), 2767-2771.
  • Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., et al., 2004, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22(1), 93–97.
  • Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U.S., 2010, Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives, Angew Chem., 49(36), 6288-6308.
  • Koç, M., Sakin, M., & Kaymak-Ertekin, F., 2010, Mikroenkapsülasyon ve Gıda Teknolojisinde Kullanımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(1), 77-86.
  • Kost, J. & Langer, R., 2012, Responsive polymeric delivery systems, Adv. Drug Deliv. Rev., 64, 327-341.
  • Kozubek, A., Gubernator, J., Przeworska, E., & Stasiuk, M., 2001, Liposomal drug delivery, a novel approach: PLARosomes, Acta Biochim. Pol., 47 (3), 639–649.
  • Kumar, R.M.N.V., 2000, Nano and microparticles as controlled drug delivery devices, J. Pharm. Pharm. Sci., 3 (2), 234–258.
  • Kumar, R.M.N.V., Bakowsky, U. & Lehr, C.M., 2004, Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials, 25, 1771–1777.
  • Kwon, H.Y., Lee, J.Y., Choi, S.W., Jang, Y., & Kim, J.H., 2001, Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method, Colloids Surf. A, 182, 123–130.
  • Lam, C.X.F., Teoh, S.H. & Hutmacher, D.W., 2007, Comparison of the degradation of polycaprolactone and polycaprolactone (b-tricalcium phosphate) scaffolds in alkaline medium, Polym Int, 56(6), 718-728.
  • Langer, R., 1993, Polymer-controlled drug delivery systems, American Chemical Society, 26, 10, 537-542.
  • Langer, R., 2001, Perspectives: drug delivery, Drugs on target Science, 293, 58–59.
  • Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C., Chang, Y.H., Lee, K.H., & Kim, J.D., 2005, Magnetic enhancement of iron oxide nanoparticles encapsulated with poly(d,l-lactide-co-glycolide), Colloids Surf. A, 255, 19–25.
  • Legrand, P., Barratt, G., Mosqueira, V., Fessi, H., & Devissaguet, J.D., 1999, Polymeric nanocapsules as drug delivery systems, A review. S. T. P., Pharma. Sci., 9, 411–418.
  • Li, M., Rouaud, O., &Poncelet, D., 2008, Microencapsulation by solvent evaporation: State of the art for process engineering approaches, International Journal of Pharmaceutics, 363(1-2), 26–39.
  • Lian, T. & Ho, R.J.Y., 2001, Trends and developments in liposome drug delivery systems, J. Pharmceut. Sci., 90 (6), 667–680.
  • Liu, K.L., Widjaja, E., Huang, Y., Ng, X.W., Loo, S.C.J., Boey, F.Y.C., & Venkatraman, S.S., 2011, A new insight for an old system: protein-PEG colocalization in relation to protein release from PCL/PEG blends, Mol Pharm., 8(6), 2173-2182.
  • Liu, M. & Frechet, J.M., 1999, Designing dendrimers for drug delivery, Pharm. Sci. Technol. Today 10, 393–401.
  • Mathiowitz, E. & Langer, R., 1987, Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation, J. Control. Rel., 5 (1), 13–22.
  • Medina, O.P., Zhu, Y., & Kairemo, K., 2004, Targeted liposomal drug delivery in cancer, Curr. Pharm. Des., 10 (24), 2981–2989.
  • Miller, R.E. & Anderson, J.L., 1964, Encapsulation process and its products, US Patent, 3,155,590.
  • Mirakabad, F. S.T., Nejati-Koshki, K., Akbarzadeh, A., Yamchi, M.R., Milani, M., Zarghami, N., Zeighamian, V., Rahimzadeh, A., Alimohammadi, S., & Hanifehpour, Y., 2014, PLGA-based nanoparticles as cancer drug delivery systems, Asian Pac J Cancer Prev., 15(2), 517-535.
  • Moghimi, S.M., Hunter, A.C., & Murray, J.C., 2005, Nanomedicine: current status and future prospects, FASEB J., 19, 311–330.
  • Mu, L. & Feng, S.S., 2003, A novel controlled release formulation for the anticancer drug paclitaxel (Taxol(R)): PLGA nanoparticles containing vitamin E TPGS, J Control Release, 86(1),33-48.
  • Nafee, N., Taetz, S., Schneider, M., Schaefer, U.F., & Lehr, C.-M., 2007, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides, Nanomedicine, 3 (3), 173–183.
  • Nagavarma, B.V.N., Yadav, H.K.S., Ayaz, A., Vasudha, L.S., & Shivakumar, H.G., 2012, Different techniques for preparation of polymeric nanoparticles- a review, Asian J Pharm Clin Res.,5(3),16-23.
  • O’Donnell, P.B. & McGinity, J.W., 1997, Preparation of microspheres by the solvent evaporation technique, Adv. Drug Deliv. Rev., 28 (1), 25–42.
  • Oshimura, M., Takasu, A., & Nagata, K., 2009, Controlled ring-opening polymerization of ε-caprolactone using polymer-supported scandium trifluoromethanesulfonate in organic solvent and ionic liquids, Macromolecules, 42(8), 3086-3091.
  • Pantazis, P., Dimas, K., Wyche, J.H., Anant, S., Houchen, C.W., Panyam, J., & Ramanujam, R.P., 2012, Preparation of siRNA-encapsulated PLGA nanoparticles for sustained release of siRNA and evaluation of encapsulation efficiency, Meth Mol Biol (Clifton NJ), 906, 311-319.
  • Paolino, D., Sinha, P., Fresta, M., & Ferrari, M., 2006, Drug delivery systems, Encyclopedia of Medical Devices and Instrumentation.
  • Park, K., & Mrsny, R.J., 2000, Bölüm 1, Controlled Drug Delivery: Present and Future, In Controlled Drug Delivery; ACS Symposium Series, American Chemical Society, Washington.
  • Prabha, S. & Labhasetwar, V., 2004, Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells, Mol. Pharmacol., 1, 211–219.
  • Raja, M.M., Lim, P. Q., Wong, Y. S., Xiong, G. M., Zhang, Y., Venkatraman, S., & Huang, Y., 2019, Polymeric Nanomaterials: Methods of Preparation and Characterization, Nanocarriers for Drug Delivery, In: Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S.(ed.), Bölüm 18, Elsevier, New York, ISBN: 978-0-12-814033-8, 557-653.
  • Ratnam, V.D., Ankola, D., Bhardwaj, V., Sahana, D.K., & Ravi Kumar, M.N.V., 2006, Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective, J. Control. Rel., 113 (3), 189–207.
  • Risch, S.J. & Reineccius, G.A., 1995, Encapsulation: overview of uses and techniques, Encapsulation and Controlled Release of Food Ingredients, Bölüm 1, American Chemical Society, Washington, 2-7.
  • Rivera, P.A., Martinez-Oharriz, M.C., Rubio, M., Irache, J.M., & Espuelas, S., 2004, Fluconazole encapsulation in PLGA microspheres by spray-drying, J. Microencapsul., 21 (2), 203–211.
  • Rosca, I.D., Watari, F., & Uo, M., 2004, Microparticle formation and its mechanism in single and double emulsion solvent evaporation, J. Control. Rel., 99 (2), 271–280.
  • Roullin, V.G., Deverre, J.R., Lemaire, L., Hindre´, F., Venier-Julienne, M.C., Vienet, R., & Benoit, J.P., 2002, Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres, Eur J Pharm Biopharm., 53(3), 293-299.
  • Sah, H., 1997, Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres, J. Contr. Rel., 47, 233–245.
  • Sahoo, S.K. & Labhasetwar, V., 2005, Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention, Mol. Pharmacol., 2, 373–383.
  • Sahoo, S.K., Parveen, S., & Panda, J.J., 2007, The present and future of nanotechnology in human health care, Nanomedicine, 3 (1), 20–31.
  • Seville, P.C., 2007, Spray-dried powders for pulmonary drug delivery, Crit. Rev. Therapeut. Drug Carrier Syst.,24 (4), 307–360.
  • Song, K.C., Lee, H.S., Choung, I.Y., Cho, K.I., Ahn, Y., & Choi, E.J., 2006, The effect type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles, Colloids Surf. A, 276, 162–167.
  • Stevanović, M., 2017, Polymeric micro- and nanoparticles for controlled and targeted drug delivery, Nanostructures for Drug Delivery, In: Andronescu, E., Grumezescu, A.M.(ed.), Bölüm 11, Elsevier, New York, ISBN: 978-0-323-46143-6, 355-378.
  • Stevanovic´, M. & Uskokovic´, D., 2009a, Poly(d,l-lactide-co-glycolide) for controlled drug delivery of vitamins, Curr. Nanosci, 5 (1), 1–15.
  • Stevanovic´, M. & Uskokovic´, D., 2009b, Influence of different degradation medium on release of ascorbic acid from poly(d,l-lactide-co-glycolide) nano- and microspheres, Russ. J. Phys. Chem. A, 83 (9), 1457–1460.
  • Stevanovic´, M.M., Jordovic´, B., & Uskokovic´, D.P., 2007a, Preparation and characterization of poly(d,l-lactide-co-glycolide) nanoparticles containing ascorbic acid, J. Biomed. Biotechnol., 8.
  • Stevanovic´, M., Savic´, J., Jordovic´, B., & Uskokovic´, D., 2007b, Fabrication, in vitro degradation and the release behaviours of poly(d,l-lactide-co-glycolide) nanospheres containing ascorbic acid, Colloids Surf. B, 59 (2), 215–223.
  • Stupar, P., Pavlovic´, V., Nunic´, J., Cundricˇ, S., Filipicˇ, M., & Stevanovic´, M., 2014, Development of lyophilized spherical particles of poly(epsilon-caprolactone) and examination of their morphology, cytocompatibility and influence on the formation of reactive oxygen species, J. Drug Deliv. Sci. Technol., 24 (2), 191–197.
  • Sumer, B. & Gao, J., 2008, Theranostic nanomedicine for cancer, Nanomedicine, 3 (2), 137–140.
  • Takashima, Y., Saito, R., Nakajima, A., Oda, M., Kimura, A., Kanazawa, T., & Okada, H., 2007, Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres, Int. J. Pharm., 343 (1–2), 262–269.
  • Tan, B.H., Muiruri, J.K., Li, Z., & He, C., 2016, Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide, ACS Sustainable Chem Eng., 4(10), 5370-5391.
  • Thomasin, C., Merkle, H.P., & Gander, B., 1998a, Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 2. Parameters determining microsphere formation, J. Pharmceut. Sci., 87 (3), 269–275.
  • Thomasin, C., Nam- Tran, H., Merkle, H.P., & Gander, B., 1998b, Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations, J. Pharm. Sci., 87 (3), 259–268.
  • Uddin, M.S., Hawlader, M.N.A., Zhu, H.J., 2001, Microencapsulation of ascorbic acid: effect of process variables on product characteristics, J. Microencapsul, 18 (2), 199–209.
  • Ulery, B.D., Nair, L.S., & Laurencin, C.T., 2011, Biomedical applications of biodegradable Polymer, J Polym Sci B Polym Phys., 49(12), 832-864.
  • Vilar, G., Tulla-Puche, J., & Albericio, F., 2012, Polymers and drug delivery systems, Curr. Drug. Deliv., 9(4), 367-394.
  • Wieland-Berghausen, S., Schote, U., Frey, M., & Schmidt, F., 2002, Comparison of microencapsulation techniques for the water-soluble drugs nitenpyram and clomipramine HCl, J. Control. Rel., 85 (1–3), 35–43.
  • Wong, S.Y., Pelet, J.M., & Putnam, D., 2007, Polymer systems for gene delivery-past, present and future, Prog. Polym. Sci., 32 (8–9), 799–837.
  • Woodruff, M.A. & Hutmacher, D.W., 2010, The return of a forgotten polymer Polycaprolactone in the 21st century, Progress in Polymer Science, 35(10), 1217-1256.
  • Yalabik-Kas, H.S., 1983, Microencapsulation and in vitro dissolution of oxazepam from ethylcellulose microcapsules, Drug Dev. Ind. Pharm., 9 (6), 1047–1060.
  • Yilgor, P., Hasirci, N., & Hasirci, V., 2010, Sequential BMP-2/BMP-7 Delivery from Polyester Nanocapsules, Journal of Biomedical Materials Research Part A, 93(2), 528-536.
  • Yoo, H.S., 2006, Preparation of biodegradable polymeric hollow microspheres using O/O/W emulsion stabilized by Labrafil, Colloids Surf. B, 52, 47–51.
  • Yoshiyuki, K., Hirata, G., & Samejima, M., 1983, Studies on microcapsules II: influence of molecular weight of ethylcellulose in the microencapsulation of ascorbic acid, Chem. Pharmaceut. Bull., 31, 4476–4482.
  • Zuidam, N.J. & Nedovic, V., 2010, Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them, Encapsulation Technologies for Active Food Ingredients and Food Processing, In: Zuidam, N.J. ve Shimoni, E. (ed.), Bölüm 2, Springer, New York, ISBN: 978-1-4419-1008-0, 3-29.
There are 95 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Özlem Aydın 0000-0002-5645-3792

İsmigül Ünlüel 0000-0002-3097-5365

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Aydın, Ö., & Ünlüel, İ. (2021). Enkapsülasyon Teknikleri ve Kontrollü Salım. Avrupa Bilim Ve Teknoloji Dergisi(32), 640-648. https://doi.org/10.31590/ejosat.1039736