Research Article
BibTex RIS Cite

Termoelektrik Soğutma Sisteminin Alternatif Transformatör Soğutma Sistemi Olarak Performansı

Year 2021, Issue: 32, 498 - 507, 31.12.2021
https://doi.org/10.31590/ejosat.1039820

Abstract

Dağıtım transformatörleri kullanıldıkları yerlere göre farklı soğutma sistemleri ile soğutulmakta olup, soğutma tipine göre yağlı tip ve kuru tip transformatörler olarak isimlendirilmektedir. Yağlı tip transformatörlerin soğutulmasında, klasik transformatör yağı olarak adlandırılan naftanik ve parafinik yağlar, yani parafin (mum) içerikli dielektriksel dayanımı yüksek yalıtım malzemeleri kullanılmaktadır. Bu yağların yanma dereceleri ve dielektriksel dayanımlarının arttırılmasını amaçlayan yenilikçi yaklaşımlar son yıllarda artmaktadır. Bu çalışmalarda, daha iyi özelliklere sahip ester bazlı yağlar, klasik transformatör yağlarının yerine kullanılarak transformatörlerin performansını ve faydalı ömrünü arttıran sonuçlar elde edilmiştir. Ancak, transformatör yağlarının özellikleri ne kadar iyi olsa da, çevre kirliliği oluşturması, yanma-patlama özelliği, bakım-onarım maliyetleri, transformatör yalıtımında dezavantaj oluşturmaktadır. Bu dezavantajların giderilmesi için, bu çalışmada, çevre dostu ve yenilenebilir enerji kaynaklarından olan termoelektrik soğutucular kullanılarak, yağlı tip transformatör soğutulmaktadır. Yapılan çalışma sonucunda termoelektrik soğutma sisteminin naftanik ve ester bazlı yağ soğutma tiplerine göre yaklaşık % 15-20 daha iyi soğutma sağladığı tespit edilmiştir. Bu soğutma sisteminin, transformatör soğutma sistemleri içerisinde yeni bir teknoloji ve tür olarak yer alacağı değerlendirilmektedir.

Supporting Institution

Tübitak

Project Number

121E010

Thanks

Bu çalışma TÜBİTAK, 121E010 nolu, “Termoelektrik Soğutucuların Yağlı Tip Dağıtım Transformatörlerinin Faydalı Ömürlerine Etkisinin İncelenmesi” adlı projenin sağladığı destekle tamamlanmış olup yazarlar TÜBİTAK’a teşekkürü bir borç bilirler.

References

  • Ab Ghani, S., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Abu Bakar, N., & Talib, M. A. (2018). Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 655–667. doi: 10.1016/J.EPSR.2017.10.008
  • Ahiska, R., Ahiska, G., & Ahiska, K. (2009). Analysis of a New Method for Measurement of Parameters of Real Thermoelectric Module Employed in Medical Cooler for Renal Hypothermia. Instrumentation Science and Technology, 37(1), 102–123. doi: 10.1080/10739140802584772
  • Ahıska, R., & Ahıska, K. (2013). Esnek İki Fazlı Termoelektrik CPU Soğutucusu. Journal of the Faculty of Engineering and Architecture of Gazi University, 22(2), 347–351. Retrieved from https://dergipark.org.tr/en/pub/gazimmfd/88383
  • Cai, Y., Wang, Y., Liu, D., & Zhao, F. Y. (2019). Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments. Applied Thermal Engineering, 148, 238–255. doi: 10.1016/J.APPLTHERMALENG.2018.11.014
  • Cuce, E., Guclu, T., & Cuce, P. M. (2020). Improving thermal performance of thermoelectric coolers (TECs) through a nanofluid driven water to air heat exchanger design: An experimental research. Energy Conversion and Management, 214, 112893. doi: 10.1016/j.enconman.2020.112893
  • Dalcali, A., & Demirel, H. (2016). Microcontroller-based cooling of a single-phase transformer with thermoelectric module. The International Journal of Energy and Engineering Sciences, 1(2), 4–14. Retrieved from https://dergipark.org.tr/en/pub/ijees/612249
  • Dmitriev, A. V., Dmitrieva, O. S., & Madyshev, I. N. (2017). Prospects for the Use of Additional Cooling System for the Oil-Immersed Transformers with Thermoelectric Transducers. MATEC Web of Conferences, 95, 15012. doi: 10.1051/matecconf/20179515008
  • Dombek, G., Goscinski, P., & Nadolny, Z. (2017). Comparison of mineral oil and esters as cooling liquids in high voltage transformer in aspect of environment protection. E3S Web of Conferences, 14, 01053. doi: 10.1051/E3SCONF/20171401053
  • Filho, A. A. P., Luna, F. M. T., & Cavalcante, C. L. (2019). Oxidative stability of mineral naphthenic insulating oils: Optimization of commercial antioxidants and metal passivators. IEEE Transactions on Dielectrics and Electrical Insulation, 26(1), 240–246. doi: 10.1109/TDEI.2018.007513
  • Garelli, L., Ríos Rodriguez, G. A., Kubiczek, K., Lasek, P., Stepien, M., Smolka, J., Storti, M., Pessolani, F., & Amadei, M. (2021). Thermo-magnetic-fluid dynamics analysis of an ONAN distribution transformer cooled with mineral oil and biodegradable esters. Thermal Science and Engineering Progress, 23, 100861. doi: 10.1016/J.TSEP.2021.100861
  • Hasan, M. I., Ugla, A. A., & Kadhim, H. S. (2020). Improving the thermal performance of electrical transformers using hybrid mixture of (transformer oil, nanoparticles, and PCM). Al-Qadisiyah Journal for Engineering Sciences, 13(3), 175–182. doi: 10.30772/QJES.V13I3.704
  • Hsin, C. L., Wu, M. H., & Wang, W. C. (2019). Thermoelectric Devices by Half-Millimeter-Long Silicon Nanowires Arrays. IEEE Transactions on Nanotechnology, 18, 921–924. doi: 10.1109/TNANO.2019.2938624
  • Hubbard, W. A., Mecklenburg, M., Lodico, J. J., Chen, Y., Ling, X. Y., Patil, R., Kessel, W. A., Flatt, G. J. K., Chan, H. L., Vareskic, B., Bal, G., Zutter, B., & Regan, B. C. (2020). Electron-Transparent Thermoelectric Coolers Demonstrated with Nanoparticle and Condensation Thermometry. ACS Nano, 14(9), 11510–11517. doi: 10.1021/acsnano.0c03958
  • Jiang, L., Zhang, H., Li, J., & Xia, P. (2019). Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling. Energy, 188, 116048. doi: 10.1016/J.ENERGY.2019.116048
  • Kaymaz, O., Kalkan, G., & Erek, A. (2015). Flow and heat transfer characterıstıcs of dıfferent transformer oıls ın one sectıon of transformer radıator. Mühendis ve Makina, 56(666), 53–63. Retrieved from https://dergipark.org.tr/en/pub/muhendismakina/736101
  • Koh, Y. R., Yazawa, K., & Shakouri, A. (2014). Cooling heat flux, COP, and cost optimization of integrated thermoelectric microcoolers with variation of thermoelectric properties. Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, 1412–1416. doi: 10.1109/ITHERM.2014.6892445
  • Lamarre, C., Crine, J. P., & Duval, M. (1987). Influence of oxidation on the electrical properties of inhibited naphthenic and paraffinic transformer oils. IEEE Transactions on Electrical Insulation, EI-22(1), 57–62. doi: 10.1109/TEI.1987.298965
  • Manjang, S., Kitta, I., & Ikhlas, A. (2019, October 1). Voltage Breakdown Characteristics of Transformer Mineral Oil with Varies the Composition of Corn Oil. Proceedings of the 2nd International Conference on High Voltage Engineering and Power Systems: Towards Sustainable and Reliable Power Delivery, ICHVEPS 2019. doi: 10.1109/ICHVEPS47643.2019.9011119
  • Perez, J. (2010). Fundamental principles of transformer thermal loading and protection. 63rd Annual Conference for Protective Relay Engineers. doi: 10.1109/CPRE.2010.5469518
  • Rao, U. M., Pulluri, H., & Kumar, N. G. (2018). Performance analysis of transformer oil/paper insulation with ester and mixed dielectric fluids. IEEE Transactions on Dielectrics and Electrical Insulation, 25(5), 1853–1862. doi: 10.1109/TDEI.2018.007224
  • Rouabeh, J., M’barki, L., Hammami, A., Jallouli, I., & Driss, A. (2019). Studies of different types of insulating oils and their mixtures as an alternative to mineral oil for cooling power transformers. Heliyon, 5(3), e01159. doi: 10.1016/j.heliyon.2019.e01159
  • Sekiguchi, R., Liu, Y., & Sano, Y. (2018). Thermal Equivalent Circuit of Peltier Device Considered Seebeck Effect and Driving Method Improving Cooling Efficiency of the Device. Electronics and Communications in Japan, 101(5), 73–83. doi: 10.1002/ecj.12065
  • Shell Diala S4 ZX-I Trafo Yağı. (n.d.). Retrieved from https://solutions.shell.com/in/products/Diala_S4_ZX-I__001E8701 Specification of Thermoelectric Module. (n.d.). Retrieved from http://www.thermonamic.com/TEC1-12706-English-20201124.pdf
  • Toren, M., & Celebi, M. (2016). Impact on efficiency of core materials in dry type transformers. 2016 National Conference on Electrical, Electronics and Biomedical Engineering, 170–173.
  • Toren, M., & Mollahasanoglu, H. (2021). Investigation of thermoelectric cooler system effect on induction motor performance. 2021 17th Conference on Electrical Machines, Drives and Power Systems, ELMA 2021 - Proceedings. doi: 10.1109/ELMA52514.2021.9503049
  • Trafo Yağı. (n.d.). Retrieved from http://speedol.com.tr/trafo-yagi/
  • Wang, X., & Wang, Z. D. (2008). Particle effect on breakdown voltage of mineral and ester based transformer oils. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 598–602. doi: 10.1109/CEIDP.2008.4772859
  • Wang, Xiaobo, Tang, C., Huang, B., Hao, J., & Chen, G. (2018). Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers. Energies, 11(3), 487. doi: 10.3390/EN11030487

Performance of Thermoelectric Cooling System as an Alternative Transformer Cooling System

Year 2021, Issue: 32, 498 - 507, 31.12.2021
https://doi.org/10.31590/ejosat.1039820

Abstract

Distribution transformers are cooled by different cooling systems according to the places in which they are used, and they are named oil-type and dry-type transformers according to this cooling type. In the cooling of oil-type transformers naphtanic and paraffinic oils, namely paraffin (wax)-containing insulating materials with high dielectric strength, called classical transformer oil, are used. Innovative approaches aiming to increase the degree of combustion and dielectric strength of these oils have been increasing in recent years. In these studies, higher quality oils such as ester-based oils have been used instead of conventional transformer oils, resulting in increased effects on the performance and life time of transformers. However, regardless of the characteristics of transformer oils, their features such as burning-explosive properties that cause environmental pollution and excess maintenance-repair costs create disadvantages in their use in transformer insulation. In this study conducted to eliminate such disadvantages, the oil-type transformers is cooled by using thermoelectric coolers, which are environmentally friendly and renewable energy sources. As a result of the study, it was determined that the thermoelectric cooling system provides 15-20% better cooling than naphtanic and ester based oil cooling types. It is considered that this will take place as a new technology and type in distribution transformer cooling systems.

Project Number

121E010

References

  • Ab Ghani, S., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Abu Bakar, N., & Talib, M. A. (2018). Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 655–667. doi: 10.1016/J.EPSR.2017.10.008
  • Ahiska, R., Ahiska, G., & Ahiska, K. (2009). Analysis of a New Method for Measurement of Parameters of Real Thermoelectric Module Employed in Medical Cooler for Renal Hypothermia. Instrumentation Science and Technology, 37(1), 102–123. doi: 10.1080/10739140802584772
  • Ahıska, R., & Ahıska, K. (2013). Esnek İki Fazlı Termoelektrik CPU Soğutucusu. Journal of the Faculty of Engineering and Architecture of Gazi University, 22(2), 347–351. Retrieved from https://dergipark.org.tr/en/pub/gazimmfd/88383
  • Cai, Y., Wang, Y., Liu, D., & Zhao, F. Y. (2019). Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments. Applied Thermal Engineering, 148, 238–255. doi: 10.1016/J.APPLTHERMALENG.2018.11.014
  • Cuce, E., Guclu, T., & Cuce, P. M. (2020). Improving thermal performance of thermoelectric coolers (TECs) through a nanofluid driven water to air heat exchanger design: An experimental research. Energy Conversion and Management, 214, 112893. doi: 10.1016/j.enconman.2020.112893
  • Dalcali, A., & Demirel, H. (2016). Microcontroller-based cooling of a single-phase transformer with thermoelectric module. The International Journal of Energy and Engineering Sciences, 1(2), 4–14. Retrieved from https://dergipark.org.tr/en/pub/ijees/612249
  • Dmitriev, A. V., Dmitrieva, O. S., & Madyshev, I. N. (2017). Prospects for the Use of Additional Cooling System for the Oil-Immersed Transformers with Thermoelectric Transducers. MATEC Web of Conferences, 95, 15012. doi: 10.1051/matecconf/20179515008
  • Dombek, G., Goscinski, P., & Nadolny, Z. (2017). Comparison of mineral oil and esters as cooling liquids in high voltage transformer in aspect of environment protection. E3S Web of Conferences, 14, 01053. doi: 10.1051/E3SCONF/20171401053
  • Filho, A. A. P., Luna, F. M. T., & Cavalcante, C. L. (2019). Oxidative stability of mineral naphthenic insulating oils: Optimization of commercial antioxidants and metal passivators. IEEE Transactions on Dielectrics and Electrical Insulation, 26(1), 240–246. doi: 10.1109/TDEI.2018.007513
  • Garelli, L., Ríos Rodriguez, G. A., Kubiczek, K., Lasek, P., Stepien, M., Smolka, J., Storti, M., Pessolani, F., & Amadei, M. (2021). Thermo-magnetic-fluid dynamics analysis of an ONAN distribution transformer cooled with mineral oil and biodegradable esters. Thermal Science and Engineering Progress, 23, 100861. doi: 10.1016/J.TSEP.2021.100861
  • Hasan, M. I., Ugla, A. A., & Kadhim, H. S. (2020). Improving the thermal performance of electrical transformers using hybrid mixture of (transformer oil, nanoparticles, and PCM). Al-Qadisiyah Journal for Engineering Sciences, 13(3), 175–182. doi: 10.30772/QJES.V13I3.704
  • Hsin, C. L., Wu, M. H., & Wang, W. C. (2019). Thermoelectric Devices by Half-Millimeter-Long Silicon Nanowires Arrays. IEEE Transactions on Nanotechnology, 18, 921–924. doi: 10.1109/TNANO.2019.2938624
  • Hubbard, W. A., Mecklenburg, M., Lodico, J. J., Chen, Y., Ling, X. Y., Patil, R., Kessel, W. A., Flatt, G. J. K., Chan, H. L., Vareskic, B., Bal, G., Zutter, B., & Regan, B. C. (2020). Electron-Transparent Thermoelectric Coolers Demonstrated with Nanoparticle and Condensation Thermometry. ACS Nano, 14(9), 11510–11517. doi: 10.1021/acsnano.0c03958
  • Jiang, L., Zhang, H., Li, J., & Xia, P. (2019). Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling. Energy, 188, 116048. doi: 10.1016/J.ENERGY.2019.116048
  • Kaymaz, O., Kalkan, G., & Erek, A. (2015). Flow and heat transfer characterıstıcs of dıfferent transformer oıls ın one sectıon of transformer radıator. Mühendis ve Makina, 56(666), 53–63. Retrieved from https://dergipark.org.tr/en/pub/muhendismakina/736101
  • Koh, Y. R., Yazawa, K., & Shakouri, A. (2014). Cooling heat flux, COP, and cost optimization of integrated thermoelectric microcoolers with variation of thermoelectric properties. Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, 1412–1416. doi: 10.1109/ITHERM.2014.6892445
  • Lamarre, C., Crine, J. P., & Duval, M. (1987). Influence of oxidation on the electrical properties of inhibited naphthenic and paraffinic transformer oils. IEEE Transactions on Electrical Insulation, EI-22(1), 57–62. doi: 10.1109/TEI.1987.298965
  • Manjang, S., Kitta, I., & Ikhlas, A. (2019, October 1). Voltage Breakdown Characteristics of Transformer Mineral Oil with Varies the Composition of Corn Oil. Proceedings of the 2nd International Conference on High Voltage Engineering and Power Systems: Towards Sustainable and Reliable Power Delivery, ICHVEPS 2019. doi: 10.1109/ICHVEPS47643.2019.9011119
  • Perez, J. (2010). Fundamental principles of transformer thermal loading and protection. 63rd Annual Conference for Protective Relay Engineers. doi: 10.1109/CPRE.2010.5469518
  • Rao, U. M., Pulluri, H., & Kumar, N. G. (2018). Performance analysis of transformer oil/paper insulation with ester and mixed dielectric fluids. IEEE Transactions on Dielectrics and Electrical Insulation, 25(5), 1853–1862. doi: 10.1109/TDEI.2018.007224
  • Rouabeh, J., M’barki, L., Hammami, A., Jallouli, I., & Driss, A. (2019). Studies of different types of insulating oils and their mixtures as an alternative to mineral oil for cooling power transformers. Heliyon, 5(3), e01159. doi: 10.1016/j.heliyon.2019.e01159
  • Sekiguchi, R., Liu, Y., & Sano, Y. (2018). Thermal Equivalent Circuit of Peltier Device Considered Seebeck Effect and Driving Method Improving Cooling Efficiency of the Device. Electronics and Communications in Japan, 101(5), 73–83. doi: 10.1002/ecj.12065
  • Shell Diala S4 ZX-I Trafo Yağı. (n.d.). Retrieved from https://solutions.shell.com/in/products/Diala_S4_ZX-I__001E8701 Specification of Thermoelectric Module. (n.d.). Retrieved from http://www.thermonamic.com/TEC1-12706-English-20201124.pdf
  • Toren, M., & Celebi, M. (2016). Impact on efficiency of core materials in dry type transformers. 2016 National Conference on Electrical, Electronics and Biomedical Engineering, 170–173.
  • Toren, M., & Mollahasanoglu, H. (2021). Investigation of thermoelectric cooler system effect on induction motor performance. 2021 17th Conference on Electrical Machines, Drives and Power Systems, ELMA 2021 - Proceedings. doi: 10.1109/ELMA52514.2021.9503049
  • Trafo Yağı. (n.d.). Retrieved from http://speedol.com.tr/trafo-yagi/
  • Wang, X., & Wang, Z. D. (2008). Particle effect on breakdown voltage of mineral and ester based transformer oils. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 598–602. doi: 10.1109/CEIDP.2008.4772859
  • Wang, Xiaobo, Tang, C., Huang, B., Hao, J., & Chen, G. (2018). Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers. Energies, 11(3), 487. doi: 10.3390/EN11030487
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Toren 0000-0002-7012-7088

Hakki Mollahasanoglu 0000-0001-6233-9198

Project Number 121E010
Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Toren, M., & Mollahasanoglu, H. (2021). Termoelektrik Soğutma Sisteminin Alternatif Transformatör Soğutma Sistemi Olarak Performansı. Avrupa Bilim Ve Teknoloji Dergisi(32), 498-507. https://doi.org/10.31590/ejosat.1039820