Research Article
BibTex RIS Cite

Stenoz Oluşmuş Y-Şeklinde Bir Damarın Akışkan-Katı Etkileşiminin OpenFOAM ile Analizi

Year 2021, Issue: 32, 872 - 877, 31.12.2021
https://doi.org/10.31590/ejosat.1040121

Abstract

Bu çalışmada Y-şeklinde katı damar modeli açık kaynak kodlu Salome program ile oluşturulmuş, stenöz gözlenen bir dalda akışkan-katı etkileşim analizi yapılmıştır. Hesaplamalı akışkanlar dinamiği analizleri OpenFOAM (foam-extend) kullanılarak gerçekleştirilmiştir. Akışkan için hem Newtonyen hem de Newtonyen olmayan akış modelleri kullanılmıştır. Hız girişi ise literatürden pulsatil bir çevrim olarak alınmıştır. Analiz sonucunda stenoz oluşmuş bölgede duvar kayma gerilmeleri ve duvar deformasyonu tespit edilmeye çalışılarak, stenoz olan bölgenin akış üzerindeki etkisi açıklanmıştır.

References

  • Ku, D.N. (1997). Blood flow in arteries. Annu Rev of Fluid Mech, 29, 399-434.
  • Caro, C.G., FitzGerald, J.M., ve Schroter, R.C. (1971). Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for arterogenesis. P Roy Soc Lond B Bio, 1046(177), 109-133.
  • Malek, A.M., Alper, S.I., ve Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. The Journal of the American Medical Association JAMA, 282(21), 2035-2042.
  • Bit, A. ve Chattopadhyay, H. (2014). Numerical investigations of pulsatile flow in stenosed artery. Acta Bioeng Biomech, 16(4), 33-44.
  • Bit, A., Ghagare, D., Rizvanov, A.A., ve Chattopadhyay, H. (2017). Assessment of influences of stenoses in right carotid artery on left carotid artery using wall stress marker. Bio Med Research International, 2017, 1-13.
  • Bit, A., Alblawi, A., Chattopadhyay, H., Quais, Q.A., Benim, A.C., Rahimi-Gorji, M., ve Do, H.T. (2020). Three-dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions. Comput Meth Prog Bio, 185, 105163.
  • Bit, A. ve Chattopadhay, H. (2018). Acute aneurysm is more critical than acute stenoses in blood vessels: a numerical investigation using stress markers. Bio Nano Sci, 8, 329–336.
  • Oberoi, S., Schoepf, U.J., Meyer, M., Henzler, T., Rowe, G.W., ve Costello, P. (2013). Progression of arterial stiffness and coronary atherosclerosis: Longitudinal evaluation by cardiac cT. Am J.Roentgenol, 200(4), 798–804.
  • Palombo, C. ve Kozakova, M. (2016). Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vascul Pharmacol, 77, 1–7.
  • Lopes, D., Puga, H., Teixeira, J.C., ve Teixeria, S.F. (2019). Influence of arterial mechanical properties on carotid blood flow: comparison of CFD and FSI studies. International Journal of Mechanical Sciences, 160, 209-218.
  • Lopes, D., Puga, H., Teixeira, J.C., ve Teixeria, S.F. (2020). Fluid-structure interaction study of carotid blood flow: comparison between viscosity models. Eur J of Mech B-Fluid, 83, 226-234.
  • Wong, K.K.L., Thavornpattanapong, P., Cheung, S.C.P., ve Tu, J.Y. (2013). Biomechanical investigation of pulsatile flow in a three-dimensional atherosclerotic carotid bifurcation model. J Mech in Med Biol, 13, 1-21.
  • Tada, S. ve Tarbell, M. (2005). A computational study flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Annals of Biomedical Engineering, 33(9), 1202-1212.
  • Kumar, N., Khader, A.S.M, Pai, R., Khan, S.H., ve Kyriacou, P.A. (2020). Fluid structure interaction study of stenosed carotid artery considering the effects of blood pressure. International Journal of Engineering Science, 154, 1-14.
  • Zhang Q., Zhang Y., Zhou Y., Zhang K., Zhang Ke. ve Gao L.(2016). An ultrasounsd simulation model for the pulsatile blood flow modulated by the motion of stenosed vessel wall. BioMed Research International, 2016,1-16.
  • Cho, Y. ve Kensey, K.R. (1991). Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel Part 1: Steady flows. Biorheology, 28, 241-262.
  • Nagargoje, M. ve Gupta, R. (2020). Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation. Comput Meth Prog Bio, 192, 105440.
  • Sinnot, M., Cleary, P.W., ve Prakash, M. (2006). An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method. Fifth International Conference on CFD in the Process Industries, Melbourne, Australia.
  • Zhao, S.Z., Xu, X.Y., Hughes, A.D., Thom, S.A., Stanton, A.V., Ariff, B., ve Long, Q. (2000). Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech, 33, 975-984.
  • Mortazavinia, Z., Goshtasbi, E.R., Emdad, H., Sharifkazemi, M.B., Zare, A., ve Mehdizadeh, A.R. (2012). Study of pulsatile non-newtonian blood flow through abdominal aorta and renal incorporating fluid-structure interaction. J Biomed Phys Eng., 2, 93-102.

Fluid-Solid Interaction of a Stenosed Y-Shaped Vessel with OpenFOAM

Year 2021, Issue: 32, 872 - 877, 31.12.2021
https://doi.org/10.31590/ejosat.1040121

Abstract

In this study, a Y-shaped solid vessel model was created with the open-source Salome program, and fluid-structure interaction analysis was performed in a branch with stenosis. Computational fluid dynamics analyzes were performed by using OpenFOAM (foam-extend). Both Newtonian and Non-Newtonian flow models are used for the fluid. The velocity input is taken as a pulsatile cycle from the literature. As a result of the analysis, the wall shear stresses and wall deformation in the stenosed region were tried to be determined, and the effect of the stenosed region on the flow was explained.

References

  • Ku, D.N. (1997). Blood flow in arteries. Annu Rev of Fluid Mech, 29, 399-434.
  • Caro, C.G., FitzGerald, J.M., ve Schroter, R.C. (1971). Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for arterogenesis. P Roy Soc Lond B Bio, 1046(177), 109-133.
  • Malek, A.M., Alper, S.I., ve Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. The Journal of the American Medical Association JAMA, 282(21), 2035-2042.
  • Bit, A. ve Chattopadhyay, H. (2014). Numerical investigations of pulsatile flow in stenosed artery. Acta Bioeng Biomech, 16(4), 33-44.
  • Bit, A., Ghagare, D., Rizvanov, A.A., ve Chattopadhyay, H. (2017). Assessment of influences of stenoses in right carotid artery on left carotid artery using wall stress marker. Bio Med Research International, 2017, 1-13.
  • Bit, A., Alblawi, A., Chattopadhyay, H., Quais, Q.A., Benim, A.C., Rahimi-Gorji, M., ve Do, H.T. (2020). Three-dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions. Comput Meth Prog Bio, 185, 105163.
  • Bit, A. ve Chattopadhay, H. (2018). Acute aneurysm is more critical than acute stenoses in blood vessels: a numerical investigation using stress markers. Bio Nano Sci, 8, 329–336.
  • Oberoi, S., Schoepf, U.J., Meyer, M., Henzler, T., Rowe, G.W., ve Costello, P. (2013). Progression of arterial stiffness and coronary atherosclerosis: Longitudinal evaluation by cardiac cT. Am J.Roentgenol, 200(4), 798–804.
  • Palombo, C. ve Kozakova, M. (2016). Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vascul Pharmacol, 77, 1–7.
  • Lopes, D., Puga, H., Teixeira, J.C., ve Teixeria, S.F. (2019). Influence of arterial mechanical properties on carotid blood flow: comparison of CFD and FSI studies. International Journal of Mechanical Sciences, 160, 209-218.
  • Lopes, D., Puga, H., Teixeira, J.C., ve Teixeria, S.F. (2020). Fluid-structure interaction study of carotid blood flow: comparison between viscosity models. Eur J of Mech B-Fluid, 83, 226-234.
  • Wong, K.K.L., Thavornpattanapong, P., Cheung, S.C.P., ve Tu, J.Y. (2013). Biomechanical investigation of pulsatile flow in a three-dimensional atherosclerotic carotid bifurcation model. J Mech in Med Biol, 13, 1-21.
  • Tada, S. ve Tarbell, M. (2005). A computational study flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Annals of Biomedical Engineering, 33(9), 1202-1212.
  • Kumar, N., Khader, A.S.M, Pai, R., Khan, S.H., ve Kyriacou, P.A. (2020). Fluid structure interaction study of stenosed carotid artery considering the effects of blood pressure. International Journal of Engineering Science, 154, 1-14.
  • Zhang Q., Zhang Y., Zhou Y., Zhang K., Zhang Ke. ve Gao L.(2016). An ultrasounsd simulation model for the pulsatile blood flow modulated by the motion of stenosed vessel wall. BioMed Research International, 2016,1-16.
  • Cho, Y. ve Kensey, K.R. (1991). Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel Part 1: Steady flows. Biorheology, 28, 241-262.
  • Nagargoje, M. ve Gupta, R. (2020). Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation. Comput Meth Prog Bio, 192, 105440.
  • Sinnot, M., Cleary, P.W., ve Prakash, M. (2006). An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method. Fifth International Conference on CFD in the Process Industries, Melbourne, Australia.
  • Zhao, S.Z., Xu, X.Y., Hughes, A.D., Thom, S.A., Stanton, A.V., Ariff, B., ve Long, Q. (2000). Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech, 33, 975-984.
  • Mortazavinia, Z., Goshtasbi, E.R., Emdad, H., Sharifkazemi, M.B., Zare, A., ve Mehdizadeh, A.R. (2012). Study of pulsatile non-newtonian blood flow through abdominal aorta and renal incorporating fluid-structure interaction. J Biomed Phys Eng., 2, 93-102.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murad Kucur 0000-0002-0356-0359

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Kucur, M. (2021). Stenoz Oluşmuş Y-Şeklinde Bir Damarın Akışkan-Katı Etkileşiminin OpenFOAM ile Analizi. Avrupa Bilim Ve Teknoloji Dergisi(32), 872-877. https://doi.org/10.31590/ejosat.1040121

Cited By

Fractional model for blood flow under MHD influence in porous and non-porous media
An International Journal of Optimization and Control: Theories & Applications (IJOCTA)
https://doi.org/10.11121/ijocta.1497