Research Article
BibTex RIS Cite

Lazer Tabanlı Hava Hızı Ölçüm Yöntemlerinin Araştırılması

Year 2021, Issue: 32, 1070 - 1075, 31.12.2021
https://doi.org/10.31590/ejosat.1040180

Abstract

Hava hızı; karasal, deniz, uzay ve havacılıktaki pek çok uygulamalarda kritik öneme sahip bir parametredir. Özellikle uçaklarda bu parametrenin hesaplanması ile türbülans, rüzgâr kesmesi gibi olaylar önceden tahmin edilebilir ve buna yönelik önlem alınabilir. Hava hızının ölçümünde kullanılan geleneksel ve lazer tabanlı teknikleri, çalışma detayları ile örnek sistem tasarımları araştırılmıştır. Ayrıca Light Detection and Ranging (LIDAR) teknolojisinin bu teknikler içerisinde edindiği yer çalışmamızda incelenmiştir. Ek olarak, hava hızı ölçümünde önemli üstünlükleri olan UV Doppler LIDAR’ın, avantajları ve tasarım karakteristikleri araştırılmıştır.

References

  • Clifford, S. F., Kaimal, J. C., Lataitis, R. J., & Strauch, R. G. (1994). Ground-based remote profiling in atmospheric studies: An overview. Proceedings of the IEEE, 82(3), 313-355.
  • Hays, P., Dehring, M., Fisk, L., Tchoryk, P., Dors, I., Ryan, J., & Hovis, F. (2005). Space-based Doppler winds lidar: a vital national need. Response to national research council (NRC) decadal study request for information (RFI).
  • P. Ingmann, E. Anderson, A. Dabas, M. Endemann, E. Kallen, D. Offiler and A. Stoffelen, "SP-1311, ‘ADM-aeolus’ april 2008," ESA Communication Production Office, 2200 AG Noordwijk. The Netherlands, Tech. Rep. SP-1311, 2008.
  • A. Peña, C. B. Hasager, S. Gryning, M. Courtney, I. Antoniou and T. Mikkelsen, "Offshore wind profiling using light detection and ranging measurements," Wind Energy, vol. 12, pp. 105-124, 2009.
  • F. Bingöl, J. Mann and G. C. Larsen, "Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning," Wind Energy, vol. 13, pp. 51-61, 2010.
  • Pitot Tüpleri ve Kullanımları, Wikipedia, https://en.wikipedia.org/wiki/Pitot_tube.
  • Muñoz Porcar, C. (2013). Analysis and design of an edge-technique-based Doppler wind lidar: practical assessment of a laboratory prototype.
  • Liu, Z. S., Chen, W. B., Zhang, T. L., Hair, J. W., & She, C. Y. (1997). An incoherent Doppler lidar for ground-based atmospheric wind profiling. Applied Physics B: Lasers & Optics, 64(5).
  • Huffaker, R., & Hardesty, R. (1996). Remote sensing of atmospheric wind velocities using solid-state and CO/sub 2/coherent laser systems. Proceedings of the IEEE, 84(2), 181-204.
  • Huffaker, R. M., Jelalian, A. V., & Thomson, J. A. L. (1970). Laser-Doppler system for detection of aircraft trailing vortices. Proceedings of the IEEE, 58(3), 322-326.
  • Post, M. J. (1994, August). Development of coherent laser radar. In Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 923-925). IEEE.
  • Rodríguez Gómez, A. A. (1998). Sistemas lidar coherentes e incoherentes de baja potencia para la detección de velocidad de blancos sólidos. Universitat Politècnica de Catalunya.
  • Korb, C. L., Gentry, B. M., & Weng, C. Y. (1992). Edge technique: theory and application to the lidar measurement of atmospheric wind. Applied Optics, 31(21), 4202-4213.
  • Abreu, V. J. (1979). Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis. Applied Optics, 18(17), 2992-2997.
  • Benedetti-Michelangeli, G., Congeduti, F., & Fiocco, G. (1972). Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar. Journal of Atmospheric Sciences, 29(5), 906-910.
  • Vaughan, J. M. (2017). The Fabry–Perot Interferometer: History, Theory, Practice and Applications. Routledge.
  • Weitkamp, C. (Ed.). (2006). Lidar: range-resolved optical remote sensing of the atmosphere (Vol. 102). Springer Science & Business.
  • Soreide, D. C., Bogue, R. K., Ehernberger, L. J., & Bagley, H. R. (1996, November). Coherent lidar turbulence for gust load alleviation. In Optical Instruments for Weather Forecasting (Vol. 2832, pp. 61-75). International Society for Optics and Photonics.
  • www.ophir.com/rayleigh_mie_optical_air_data.htm
  • http://www.michiganaero.com/moads/index.shtml
  • Schmitt, N. P., Rehm, W., Pistner, T., Zeller, P., Diehl, H., & Navé, P. (2007). The AWIATOR airborne LIDAR turbulence sensor. Aerospace Science and Technology, 11(7-8), 546-552.
  • Desurvire, E. (1992). Erbium-doped fiber amplifiers in Principle and applications.
  • Digonnet, M. J. (2001). Rare-earth-doped fiber lasers and amplifiers, revised and expanded. CRC press.
  • Williams, G. M., Putnam, M. A., & Friebele, E. J. (1996, October). Space radiation effects on erbium-doped fibers. In Photonics for space environments IV (Vol. 2811, pp. 30-37). International Society for Optics and Photonics.
  • Boucher, R. H., Woodward, W. F., Lomheim, T. S., Shima, R. M., Asman, D. J., Killian, K. M., ... & Goellner, G. J. (1996). Proton-induced degradation in interferometric fiber optic gyroscopes. Optical Engineering, 35(4), 955-976.
  • Williams, G. M., Wright, B. M., Mack, W. D., & Friebele, E. J. (1999, December). Projecting the performance of erbium-doped fiber devices in a space radiation environment. In Optical Fiber Reliability and Testing (Vol. 3848, pp. 271-280). International Society for Optics and Photonics.
  • Friebele, E. J., Sigel, G. H., & Gingerich, M. E. (1978). Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region. IEEE Transactions on Nuclear science, 25(6), 1261-1266.
  • Girard, S. (2003). Analyse de la réponse des fibres optiques soumises à divers environnements radiatifs (Doctoral dissertation, Saint-Etienne).
  • Anghinolfi, F., Jarron, P., Martemiyanov, A. N., Usenko, E., Wenninger, H., Williams, M. C. S., & Zichichi, A. (2004). NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 533(1-2), 183-187.
  • Rose, T. S., Gunn, D., & Valley, G. C. (2001). Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements. Journal of lightwave technology, 19(12), 1918.
  • Bussjager, R. J., Hayduk, M. J., Johns, S. T., & Taylor, E. W. (2001, March). Gamma-ray induced responses in an erbium doped fiber laser. In 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542) (Vol. 3, pp. 3-1473). IEEE.
  • Van Uffelen, M., Girard, S., Goutaland, F., Gusarov, A., Brichard, B., & Berghmans, F. (2004). Gamma radiation effects in Er-doped silica fibers. IEEE Transactions on Nuclear Science, 51(5), 2763-2769.
  • Tortech, B., Van Uffelen, M., Gusarov, A., Ouerdane, Y., Boukenter, A., Meunier, J. P., ... & Thienpont, H. (2007). Gamma radiation induced loss in erbium doped optical fibers. Journal of non-crystalline solids, 353(5-7), 477-480.
  • Williams, G. M., Putnam, M. A., Askins, C. G., Gingerich, M. E., & Friebele, E. J. (1992). Radiation effects in erbium-doped optical fibres. Electronics Letters, 28(19), 1816-1818.
  • Lewis, R. B. J., Sikora, E. S. R., Wright, J. V., West, R. H., & Dowling, S. (1992). Investigation of effects of gamma radiation on erbium doped fibre amplifiers. Electronics Letters, 28(17), 1589-1591.
  • Digonnet, M. J. (2001). Rare-earth-doped fiber lasers and amplifiers, revised and expanded. CRC press.
  • Fukuda, C., Chigusa, Y., Kashiwada, T., Onishi, M., Kanamori, H., & Okamoto, S. (1994). γ-ray irradiation durability of erbium-doped fibres. Electronics Letters, 30(16), 1342-1344.
  • Tortech, B., Ouerdane, Y., Boukenter, A., Meunier, J. P., Girard, S., Van Uffelen, M., ... & Thienpont, H. (2009). Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber. Optical Materials, 31(9), 1296-1299.

Investigation of Laser Based Air Speed Measurement Methods

Year 2021, Issue: 32, 1070 - 1075, 31.12.2021
https://doi.org/10.31590/ejosat.1040180

Abstract

Airspeed is a critical parameter in many applications in terrestrial, marine, space, and aviation. Especially in airplanes, by calculating this parameter, events such as turbulence and wind shear can be predicted, and precautions can be taken. In this study, traditional and laser-based techniques used in the measurement of air velocity, working details and sample system designs were investigated. In addition, the importance of Light Detection and Ranging (LIDAR) technology in these techniques has been examined. In addition, the advantages and design characteristics of UV Doppler LIDAR, which has significant advantages in air velocity measurement, are investigated.

References

  • Clifford, S. F., Kaimal, J. C., Lataitis, R. J., & Strauch, R. G. (1994). Ground-based remote profiling in atmospheric studies: An overview. Proceedings of the IEEE, 82(3), 313-355.
  • Hays, P., Dehring, M., Fisk, L., Tchoryk, P., Dors, I., Ryan, J., & Hovis, F. (2005). Space-based Doppler winds lidar: a vital national need. Response to national research council (NRC) decadal study request for information (RFI).
  • P. Ingmann, E. Anderson, A. Dabas, M. Endemann, E. Kallen, D. Offiler and A. Stoffelen, "SP-1311, ‘ADM-aeolus’ april 2008," ESA Communication Production Office, 2200 AG Noordwijk. The Netherlands, Tech. Rep. SP-1311, 2008.
  • A. Peña, C. B. Hasager, S. Gryning, M. Courtney, I. Antoniou and T. Mikkelsen, "Offshore wind profiling using light detection and ranging measurements," Wind Energy, vol. 12, pp. 105-124, 2009.
  • F. Bingöl, J. Mann and G. C. Larsen, "Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning," Wind Energy, vol. 13, pp. 51-61, 2010.
  • Pitot Tüpleri ve Kullanımları, Wikipedia, https://en.wikipedia.org/wiki/Pitot_tube.
  • Muñoz Porcar, C. (2013). Analysis and design of an edge-technique-based Doppler wind lidar: practical assessment of a laboratory prototype.
  • Liu, Z. S., Chen, W. B., Zhang, T. L., Hair, J. W., & She, C. Y. (1997). An incoherent Doppler lidar for ground-based atmospheric wind profiling. Applied Physics B: Lasers & Optics, 64(5).
  • Huffaker, R., & Hardesty, R. (1996). Remote sensing of atmospheric wind velocities using solid-state and CO/sub 2/coherent laser systems. Proceedings of the IEEE, 84(2), 181-204.
  • Huffaker, R. M., Jelalian, A. V., & Thomson, J. A. L. (1970). Laser-Doppler system for detection of aircraft trailing vortices. Proceedings of the IEEE, 58(3), 322-326.
  • Post, M. J. (1994, August). Development of coherent laser radar. In Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 923-925). IEEE.
  • Rodríguez Gómez, A. A. (1998). Sistemas lidar coherentes e incoherentes de baja potencia para la detección de velocidad de blancos sólidos. Universitat Politècnica de Catalunya.
  • Korb, C. L., Gentry, B. M., & Weng, C. Y. (1992). Edge technique: theory and application to the lidar measurement of atmospheric wind. Applied Optics, 31(21), 4202-4213.
  • Abreu, V. J. (1979). Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis. Applied Optics, 18(17), 2992-2997.
  • Benedetti-Michelangeli, G., Congeduti, F., & Fiocco, G. (1972). Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar. Journal of Atmospheric Sciences, 29(5), 906-910.
  • Vaughan, J. M. (2017). The Fabry–Perot Interferometer: History, Theory, Practice and Applications. Routledge.
  • Weitkamp, C. (Ed.). (2006). Lidar: range-resolved optical remote sensing of the atmosphere (Vol. 102). Springer Science & Business.
  • Soreide, D. C., Bogue, R. K., Ehernberger, L. J., & Bagley, H. R. (1996, November). Coherent lidar turbulence for gust load alleviation. In Optical Instruments for Weather Forecasting (Vol. 2832, pp. 61-75). International Society for Optics and Photonics.
  • www.ophir.com/rayleigh_mie_optical_air_data.htm
  • http://www.michiganaero.com/moads/index.shtml
  • Schmitt, N. P., Rehm, W., Pistner, T., Zeller, P., Diehl, H., & Navé, P. (2007). The AWIATOR airborne LIDAR turbulence sensor. Aerospace Science and Technology, 11(7-8), 546-552.
  • Desurvire, E. (1992). Erbium-doped fiber amplifiers in Principle and applications.
  • Digonnet, M. J. (2001). Rare-earth-doped fiber lasers and amplifiers, revised and expanded. CRC press.
  • Williams, G. M., Putnam, M. A., & Friebele, E. J. (1996, October). Space radiation effects on erbium-doped fibers. In Photonics for space environments IV (Vol. 2811, pp. 30-37). International Society for Optics and Photonics.
  • Boucher, R. H., Woodward, W. F., Lomheim, T. S., Shima, R. M., Asman, D. J., Killian, K. M., ... & Goellner, G. J. (1996). Proton-induced degradation in interferometric fiber optic gyroscopes. Optical Engineering, 35(4), 955-976.
  • Williams, G. M., Wright, B. M., Mack, W. D., & Friebele, E. J. (1999, December). Projecting the performance of erbium-doped fiber devices in a space radiation environment. In Optical Fiber Reliability and Testing (Vol. 3848, pp. 271-280). International Society for Optics and Photonics.
  • Friebele, E. J., Sigel, G. H., & Gingerich, M. E. (1978). Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region. IEEE Transactions on Nuclear science, 25(6), 1261-1266.
  • Girard, S. (2003). Analyse de la réponse des fibres optiques soumises à divers environnements radiatifs (Doctoral dissertation, Saint-Etienne).
  • Anghinolfi, F., Jarron, P., Martemiyanov, A. N., Usenko, E., Wenninger, H., Williams, M. C. S., & Zichichi, A. (2004). NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 533(1-2), 183-187.
  • Rose, T. S., Gunn, D., & Valley, G. C. (2001). Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements. Journal of lightwave technology, 19(12), 1918.
  • Bussjager, R. J., Hayduk, M. J., Johns, S. T., & Taylor, E. W. (2001, March). Gamma-ray induced responses in an erbium doped fiber laser. In 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542) (Vol. 3, pp. 3-1473). IEEE.
  • Van Uffelen, M., Girard, S., Goutaland, F., Gusarov, A., Brichard, B., & Berghmans, F. (2004). Gamma radiation effects in Er-doped silica fibers. IEEE Transactions on Nuclear Science, 51(5), 2763-2769.
  • Tortech, B., Van Uffelen, M., Gusarov, A., Ouerdane, Y., Boukenter, A., Meunier, J. P., ... & Thienpont, H. (2007). Gamma radiation induced loss in erbium doped optical fibers. Journal of non-crystalline solids, 353(5-7), 477-480.
  • Williams, G. M., Putnam, M. A., Askins, C. G., Gingerich, M. E., & Friebele, E. J. (1992). Radiation effects in erbium-doped optical fibres. Electronics Letters, 28(19), 1816-1818.
  • Lewis, R. B. J., Sikora, E. S. R., Wright, J. V., West, R. H., & Dowling, S. (1992). Investigation of effects of gamma radiation on erbium doped fibre amplifiers. Electronics Letters, 28(17), 1589-1591.
  • Digonnet, M. J. (2001). Rare-earth-doped fiber lasers and amplifiers, revised and expanded. CRC press.
  • Fukuda, C., Chigusa, Y., Kashiwada, T., Onishi, M., Kanamori, H., & Okamoto, S. (1994). γ-ray irradiation durability of erbium-doped fibres. Electronics Letters, 30(16), 1342-1344.
  • Tortech, B., Ouerdane, Y., Boukenter, A., Meunier, J. P., Girard, S., Van Uffelen, M., ... & Thienpont, H. (2009). Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber. Optical Materials, 31(9), 1296-1299.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Atıf Kerem Şanlı 0000-0001-8304-8154

Timuçin Emre Tabaru 0000-0002-1373-3620

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Şanlı, A. K., & Tabaru, T. E. (2021). Lazer Tabanlı Hava Hızı Ölçüm Yöntemlerinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(32), 1070-1075. https://doi.org/10.31590/ejosat.1040180