Research Article
BibTex RIS Cite

Fourier Dönüşümlü Kızılötesi Spektroskobi ile Kızartma Yağlarındaki Bazı Kimyasal Değişimlerin İncelenmesi

Year 2021, Issue: 32, 542 - 547, 31.12.2021
https://doi.org/10.31590/ejosat.1040464

Abstract

Bu çalışmada derin yağda kızartma işlemi sırasında kanola ve bitkisel susuz yağda meydana gelen kimyasal değişikliklerin belirlenmesi amaçlanmıştır. Donmuş parmak patateslerin kızartılması için yağ tipi ve kızartma tekrarı faktör olarak düşünülerek bir faktöriyel deneme deseni oluşturulmuştur. Bu deneme desenine göre toplam 11 farklı kızartma işlemi gerçekleştirilmiştir. Dondurulmuş patates örnekleri, belirtilen yağlar ile, ev tipi elektrikli bir fritözde 4 dakika boyunca, 180ºC’de taze yağ eklenmeksizin kızartılmıştır. Bütün yağ örnekleri için serbest yağ asitliği, peroksit sayısı, konjuge dien ve trien (K232 ve K270) değerleri belirlenmiştir. Ayrıca, Fourier dönüşümlü kızılötesi spektrometre ile spektralar toplanarak, kızartma yağlarında meydana gelen kimyasal değişimlerin daha iyi analiz edilmesi ve örneklerin sınıflandırılması sağlanmıştır. Elde edilen veriler varyans analizi (ANOVA) ve çok değişkenli (PCA) istatiksel yöntemlerle açıklanmıştır. ANOVA sonuçları, yağ tipi ve kızartma tekrarının yağların peroksit sayısı ve konjuge dien ve trien değerleri üzerine önemli bir etkisi olduğunu göstermektedir. Temel bileşenler analizi (PCA) ile kızartma işleminde kullanılan yağ örneklerinin yağ tipini göre sınıflandırılması sağlanmıştır (3 BS, R2 = 0,97). Elde edilen verilere göre 180 °C’de gerçekleştirilecek derin yağda kızartma işleminde kanola yağı kullanılması ve taze eklemeksizin kızartma işleminin en fazla 7 kez tekrarlanması önerilir.

Supporting Institution

TUBİTAK

Project Number

2209/a

Thanks

Bu çalışma TÜBİTAK 2209/A Üniversite Öğrencileri Araştırma Projeleri kapsamında tamamlanmıştır. Bu projeye verdiklerı desteklerinden dolayı Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na teşekkürlerimizi sunarız.Ayrıca FTIR analizlerine yardımcı oldukları için Sivas Cumhuriyet Üniversitesi İleri Teknoloji Araştırma ve Uygulama Merkezi’ne de teşekkür ederiz.

References

  • Ahmad, M. H., Shahbaz, Z., Imran, M., Khan, M. K., Muhammad, N., Iqbal, S., ... & Ahmad, T. (2021). Monitoring of frying process in canola oil blend using fourier transform infrared and chemometrics techniques. Food Science & Nutrition.
  • Aladedunye, F. A., & Przybylski, R. (2009). Degradation and nutritional quality changes of oil during frying. Journal of the American Oil Chemists' Society, 86(2), 149-156.
  • AOCS. (1993). AOCS Official Method Cd 8‐53. Official methods and recommended practices of the American oil chemists’ society method Cd 8-53. Peroxide value acetic acid-chloroform method.
  • AOCS. (1997). AOCS official method Ca 5a-40. Official methods and recommended practices of the American oil chemists’ society method 5a-40. Free fatty acids.
  • AOCS. (2005 ). AOCS official method Ch 5-91. Official methods and recommended practices of the American oil chemists’ society method Ch 5-91. Determination of spesific extinction of oils and fats.
  • Bou, R., Navas, J. A., Tres, A., Codony, R., & Guardiola, F. (2012). Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control, 27(1), 254-267.
  • Cagdas, E., & Kumcuoglu, S. (2015). Effect of grape seed powder on oxidative stability of precooked chicken nuggets during frozen storage. Journal of food science and technology, 52(5), 2918-2925.
  • Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429.
  • Du, R., Lai, K., Xiao, Z., Shen, Y., Wang, X., & Huang, Y. (2012). Evaluation of the Quality of Deep Frying Oils with Fourier Transform Near‐infrared and Mid‐infrared Spectroscop. Journal of food science, 77(2), C261-C266.
  • Fahri, Y., Onur, O., & Ozge, O. (2015). Changes in quality characteristics of different deep frying fats during frying and regeneration potentials of different adsorbents in wasted frying oils. JFNR, 3(3), 176-181.
  • Farhoosh, R., & Kenari, R. E. (2009). Anti-rancidity effects of sesame and rice bran oils on canola oil during deep frying. Journal of the American Oil Chemists' Society, 86(6), 539-544.
  • Fujisaki, M., Endo, Y., & Fujimoto, K. (2002). Retardation of volatile aldehyde formation in the exhaust of frying oil by heating under low oxygen atmospheres. Journal of the American Oil Chemists' Society, 79(9), 909-914.
  • Gunstone, F. (2009). Oils and fats in the food industry (Vol. 6). John Wiley & Sons.
  • Gurdeniz, G., Ozen, B., & Tokatli, F. (2010). Comparison of fatty acid profiles and mid‐infrared spectral data for classification of olive oils. European journal of lipid science and technology, 112(2), 218-226.
  • Gupta, M. K. (2005). Frying of foods and snack food production. Bailey's Industrial Oil and Fat Products.
  • Melton, S. L., Jafar, S., Sykes, D., & Trigiano, M. K. (1994). Review of stability measurements for frying oils and fried food flavor. Journal of the American Oil Chemists’ Society, 71(12), 1301-1308.
  • Moreira, R. G. (2014). Vacuum frying versus conventional frying–An overview. European Journal of Lipid Science and Technology, 116(6), 723-734.
  • Rababah, T. M., Feng, H., Yang, W., & Yücel, S. (2012). Fortification of potato chips with natural plant extracts to enhance their sensory properties and storage stability. Journal of the American Oil Chemists' Society, 89(8), 1419-1425.
  • Saguy, I. S., & Dana, D. (2003). Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of food engineering, 56(2-3), 143-152.
  • Sebastian, A., Ghazani, S. M., & Marangoni, A. G. (2014). Quality and safety of frying oils used in restaurants. Food Research International, 64, 420-423.
  • Sunisa, W., Worapong, U., Sunisa, S., Saowaluck, J., & Saowakon, W. (2011). Quality changes of chicken frying oil as affected of frying conditions. International Food Research Journal, 18(2).
  • Tseng, Y. C., Moreira, R., & Sun, X. (1996). Total frying‐use time effects on soybean‐oil deterioration and on tortilla chip quality. International journal of food science & technology, 31(3), 287-294.
  • Tsuzuki, W., Matsuoka, A., & Ushida, K. (2010). Formation of trans fatty acids in edible oils during the frying and heating process. Food Chemistry, 123(4), 976-982.
  • Uncu, O., Ozen, B., & Tokatli, F. (2019). Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils. Talanta, 201, 65-73.
  • Warner, K. (2002). Chemistry of frying oils. In Food lipids (pp. 222-239). CRC Press.
  • Weisshaar, R. (2014). Quality control of used deep‐frying oils. European Journal of Lipid Science and Technology, 116(6), 716-722.

Determination of Some Chemical Changes in Frying Oils by Fourier Transform Infrared Spectrum

Year 2021, Issue: 32, 542 - 547, 31.12.2021
https://doi.org/10.31590/ejosat.1040464

Abstract

The purpose of this study is to determine some chemical changes occurring in canola oil and anhydrous fat during deep frying process. For frying frozen potato samples, a factorial design was constructed by considering the oil type and the number of frying as factors. 11 different frying processes were carried out according to the experimental design. Frozen potato samples were fried in a domestic deep-fat electrical fryer for 4 minutes at 180ºC without oil replenishment. Free fatty acid content, peroxide value and K232, K270 values were determined for all oil samples. Moreover, collection of Fourier-transform infrared (FTIR) spectra during frying process is also aimed in order to better characterize and classify frying oil samples. The data were analyzed by analysis of variance (ANOVA) and principal component analysis (PCA). ANOVA results showed that, oil type and number of frying have significant effects on peroxide number and conjugated diene and triene values of the samples. The PCA model with 3 PCs, R2 = 0.97 revealed that there is a separation of the frying oil samples with respect to oil type. According to the data obtained, it is recommended to use canola oil in deep oil frying for maximum 7 times at 180 °C.

Project Number

2209/a

References

  • Ahmad, M. H., Shahbaz, Z., Imran, M., Khan, M. K., Muhammad, N., Iqbal, S., ... & Ahmad, T. (2021). Monitoring of frying process in canola oil blend using fourier transform infrared and chemometrics techniques. Food Science & Nutrition.
  • Aladedunye, F. A., & Przybylski, R. (2009). Degradation and nutritional quality changes of oil during frying. Journal of the American Oil Chemists' Society, 86(2), 149-156.
  • AOCS. (1993). AOCS Official Method Cd 8‐53. Official methods and recommended practices of the American oil chemists’ society method Cd 8-53. Peroxide value acetic acid-chloroform method.
  • AOCS. (1997). AOCS official method Ca 5a-40. Official methods and recommended practices of the American oil chemists’ society method 5a-40. Free fatty acids.
  • AOCS. (2005 ). AOCS official method Ch 5-91. Official methods and recommended practices of the American oil chemists’ society method Ch 5-91. Determination of spesific extinction of oils and fats.
  • Bou, R., Navas, J. A., Tres, A., Codony, R., & Guardiola, F. (2012). Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control, 27(1), 254-267.
  • Cagdas, E., & Kumcuoglu, S. (2015). Effect of grape seed powder on oxidative stability of precooked chicken nuggets during frozen storage. Journal of food science and technology, 52(5), 2918-2925.
  • Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429.
  • Du, R., Lai, K., Xiao, Z., Shen, Y., Wang, X., & Huang, Y. (2012). Evaluation of the Quality of Deep Frying Oils with Fourier Transform Near‐infrared and Mid‐infrared Spectroscop. Journal of food science, 77(2), C261-C266.
  • Fahri, Y., Onur, O., & Ozge, O. (2015). Changes in quality characteristics of different deep frying fats during frying and regeneration potentials of different adsorbents in wasted frying oils. JFNR, 3(3), 176-181.
  • Farhoosh, R., & Kenari, R. E. (2009). Anti-rancidity effects of sesame and rice bran oils on canola oil during deep frying. Journal of the American Oil Chemists' Society, 86(6), 539-544.
  • Fujisaki, M., Endo, Y., & Fujimoto, K. (2002). Retardation of volatile aldehyde formation in the exhaust of frying oil by heating under low oxygen atmospheres. Journal of the American Oil Chemists' Society, 79(9), 909-914.
  • Gunstone, F. (2009). Oils and fats in the food industry (Vol. 6). John Wiley & Sons.
  • Gurdeniz, G., Ozen, B., & Tokatli, F. (2010). Comparison of fatty acid profiles and mid‐infrared spectral data for classification of olive oils. European journal of lipid science and technology, 112(2), 218-226.
  • Gupta, M. K. (2005). Frying of foods and snack food production. Bailey's Industrial Oil and Fat Products.
  • Melton, S. L., Jafar, S., Sykes, D., & Trigiano, M. K. (1994). Review of stability measurements for frying oils and fried food flavor. Journal of the American Oil Chemists’ Society, 71(12), 1301-1308.
  • Moreira, R. G. (2014). Vacuum frying versus conventional frying–An overview. European Journal of Lipid Science and Technology, 116(6), 723-734.
  • Rababah, T. M., Feng, H., Yang, W., & Yücel, S. (2012). Fortification of potato chips with natural plant extracts to enhance their sensory properties and storage stability. Journal of the American Oil Chemists' Society, 89(8), 1419-1425.
  • Saguy, I. S., & Dana, D. (2003). Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of food engineering, 56(2-3), 143-152.
  • Sebastian, A., Ghazani, S. M., & Marangoni, A. G. (2014). Quality and safety of frying oils used in restaurants. Food Research International, 64, 420-423.
  • Sunisa, W., Worapong, U., Sunisa, S., Saowaluck, J., & Saowakon, W. (2011). Quality changes of chicken frying oil as affected of frying conditions. International Food Research Journal, 18(2).
  • Tseng, Y. C., Moreira, R., & Sun, X. (1996). Total frying‐use time effects on soybean‐oil deterioration and on tortilla chip quality. International journal of food science & technology, 31(3), 287-294.
  • Tsuzuki, W., Matsuoka, A., & Ushida, K. (2010). Formation of trans fatty acids in edible oils during the frying and heating process. Food Chemistry, 123(4), 976-982.
  • Uncu, O., Ozen, B., & Tokatli, F. (2019). Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils. Talanta, 201, 65-73.
  • Warner, K. (2002). Chemistry of frying oils. In Food lipids (pp. 222-239). CRC Press.
  • Weisshaar, R. (2014). Quality control of used deep‐frying oils. European Journal of Lipid Science and Technology, 116(6), 716-722.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ayşe Burcu Aktaş 0000-0003-2520-0976

Melda Melihat Erdal 0000-0001-6863-5617

Dilber Kaya 0000-0003-1605-2481

Fatma Aycan Yiğit 0000-0003-0575-3194

Project Number 2209/a
Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Aktaş, A. B., Erdal, M. M., Kaya, D., Yiğit, F. A. (2021). Fourier Dönüşümlü Kızılötesi Spektroskobi ile Kızartma Yağlarındaki Bazı Kimyasal Değişimlerin İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(32), 542-547. https://doi.org/10.31590/ejosat.1040464