Research Article
BibTex RIS Cite

Elektrokimyasal Olarak Eksfoliye Edilmiş Grafen-Kitosan Hidrojelinin Simetrik Süperkapasitör Uygulaması

Year 2022, Issue: 33, 133 - 137, 31.01.2022
https://doi.org/10.31590/ejosat.1036869

Abstract

Bu çalışmada, çapraz bağlama reaktifi ile elektrokimyasal olarak pul pul dökülmüş grafen-kitosan hidrojel hazırlandı. Daha sonra, grafen-kitosan hidrojel kullanılarak simetrik bir katı hal süper kapasitör üretildi. Üretilen grafenin yüzey morfolojisi SEM ve TEM kullanılarak araştırıldı. Simetrik tamamen katı hal süper kapasitörünü oluşturduktan sonra cihaz, 1 mA g-1 akım yoğunluğunda spesifik kapasitansı (Cm)153.6 F g-1 olarak hesaplandı. 1000 ardışık döngüden sonra olağanüstü bir kapasitans tutulması, %97'nin üzerinde bir tutma ile gözlemlendi. Süper kapasitör, 3,47 kW kg-1 yüksek enerji yoğunluğunun yanı sıra 102,07 W kg-1 güç yoğunluğu sağlama yeteneğine sahiptir.

References

  • Bashir, S., Hasan, K., Hina, M., Ali Soomro, R., Mujtaba, M. A., Ramesh, S., … Manikam, R. (2021). Conducting polymer/graphene hydrogel electrodes based aqueous smart Supercapacitors: A review and future prospects. Journal of Electroanalytical Chemistry. Retrieved from https://doi.org/10.1016/j.jelechem.2021.115626
  • Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today. Retrieved from https://doi.org/10.1016/S1369-7021(13)70014-2
  • Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: A review. Journal of Materials Chemistry A. Retrieved from https://doi.org/10.1039/c7ta00863e
  • Bose, S., Kuila, T., Mishra, A. K., Rajasekar, R., Kim, N. H., & Lee, J. H. (2012). Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry. Retrieved from https://doi.org/10.1039/c1jm14468e
  • Cao, X., Jiang, C., Sun, N., Tan, D., Li, Q., Bi, S., & Song, J. (2021). Recent progress in multifunctional hydrogel-based supercapacitors. Journal of Science: Advanced Materials and Devices. Retrieved from https://doi.org/10.1016/j.jsamd.2021.06.002
  • El-Gendy, D. M., Ghany, N. A. A., El Sherbini, E. E. F., & Allam, N. K. (2017). Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors. Scientific Reports, 7. Retrieved from https://doi.org/10.1038/srep43104
  • He, W., Wang, C., Zhuge, F., Deng, X., Xu, X., & Zhai, T. (2017). Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy, 35, 242–250. Retrieved from https://doi.org/10.1016/j.nanoen.2017.03.045
  • Hu, N., Zhang, L., Yang, C., Zhao, J., Yang, Z., Wei, H., … Xu, Z. J. (2016). Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 6. Retrieved from https://doi.org/10.1038/srep19777
  • Ke, Q., & Wang, J. (2016). Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics. Retrieved from https://doi.org/10.1016/j.jmat.2016.01.001
  • Khalid, M., Quispe, L. T., Pla Cid, C. C., Mello, A., Tumelero, M. A., & Pasa, A. A. (2017). The synthesis of highly corrugated graphene and its polyaniline composite for supercapacitors. New Journal of Chemistry, 41(11), 4629–4636. Retrieved from https://doi.org/10.1039/c7nj00024c
  • Khazaeli, A., Godbille-Cardona, G., & Barz, D. P. J. (2020). A Novel Flexible Hybrid Battery–Supercapacitor Based on a Self-Assembled Vanadium-Graphene Hydrogel. Advanced Functional Materials, 30(21). Retrieved from https://doi.org/10.1002/adfm.201910738
  • Lai, L., Chen, L., Zhan, D., Sun, L., Liu, J., Lim, S. H., … Lin, J. (2011). One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon, 49(10), 3250–3257. Retrieved from https://doi.org/10.1016/j.carbon.2011.03.051
  • Mao, S., Yu, K., Chang, J., Steeber, D. A., Ocola, L. E., & Chen, J. (2013). Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Scientific Reports, 3. Retrieved from https://doi.org/10.1038/srep01696
  • Sadak, O. (2021). One-pot scalable synthesis of rGO/AuNPs nanocomposite and its application in enzymatic glucose biosensor. Nanocomposites, 7(1), 44–52. Retrieved from https://doi.org/10.1080/20550324.2021.1917837
  • Sadak, O., Prathap, M. U. A., & Gunasekaran, S. (2019). Facile fabrication of highly ordered polyaniline–exfoliated graphite composite for enhanced charge storage. Carbon, 144, 756–763. Retrieved from https://doi.org/10.1016/j.carbon.2018.12.062
  • Sadak, O., Sundramoorthy, A. K., & Gunasekaran, S. (2017). Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosensors and Bioelectronics, 89, 430–436. Retrieved from https://doi.org/10.1016/j.bios.2016.04.073
  • Sadak, O., Sundramoorthy, A. K., & Gunasekaran, S. (2018). Facile and green synthesis of highly conductive graphene paper. Carbon, 138, 108–117. Retrieved from https://doi.org/10.1016/j.carbon.2018.05.076
  • Sadak, O., Wang, W., Guan, J., Sundramoorthy, A. K., & Gunasekaran, S. (2019). MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors. ACS Applied Nano Materials, 2(12), 4386–4394. Retrieved from https://doi.org/10.1021/acsanm.9b00797
  • Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., & Niu, L. (2009). Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir, 25(20), 12030–12033. Retrieved from https://doi.org/10.1021/la903265p
  • Sollami Delekta, S., Smith, A. D., Li, J., & Östling, M. (2017). Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale, 9(21), 6998–7005. Retrieved from https://doi.org/10.1039/c7nr02204b
  • Udayan, A. P. M., Sadak, O., & Gunasekaran, S. (2020). Metal-Organic Framework/Polyaniline Nanocomposites for Lightweight Energy Storage. ACS Applied Energy Materials, 3(12), 12368–12377. Retrieved from https://doi.org/10.1021/acsaem.0c02376
  • Wang, H., Lin, J., & Shen, Z. X. (2016). Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices. Retrieved from https://doi.org/10.1016/j.jsamd.2016.08.001
  • Wang, W., Sadak, O., Guan, J., & Gunasekaran, S. (2020). Facile synthesis of graphene paper/polypyrrole nanocomposite as electrode for flexible solid-state supercapacitor. Journal of Energy Storage, 30, 101533. Retrieved from https://doi.org/10.1016/j.est.2020.101533
  • Wu, L., Hao, L., Pang, B., Wang, G., Zhang, Y., & Li, X. (2017). MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 5(9), 4629–4637. Retrieved from https://doi.org/10.1039/c6ta10757e
  • Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. Retrieved from https://doi.org/10.1038/nnano.2009.177
  • Xu, Y., Lin, Z., Huang, X., Liu, Y., Huang, Y., & Duan, X. (2013). Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 7(5), 4042–4049. Retrieved from https://doi.org/10.1021/nn4000836
  • Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., & Duan, X. (2013). Functionalized graphene hydrogel-based high-performance supercapacitors. Advanced Materials, 25(40), 5779–5784. Retrieved from https://doi.org/10.1002/adma.201301928
  • Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N. O., Huang, Y., & Duan, X. (2014). Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 5. Retrieved from https://doi.org/10.1038/ncomms5554
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 4(7), 4324–4330. Retrieved from https://doi.org/10.1021/nn101187z
  • Xue, G., Zhong, J., Cheng, Y., & Wang, B. (2016). Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors. Electrochimica Acta, 215, 29–35. Retrieved from https://doi.org/10.1016/j.electacta.2016.08.063
  • Zhang, Li, & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531. Retrieved from https://doi.org/10.1039/b813846j
  • Zhang, Liling, Huang, D., Hu, N., Yang, C., Li, M., Wei, H., … Zhang, Y. (2017). Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. Journal of Power Sources, 342, 1–8. Retrieved from https://doi.org/10.1016/j.jpowsour.2016.11.068

Symmetric Supercapacitor Application of Electrochemically Exfoliated Graphene – Chitosan Hydrogel

Year 2022, Issue: 33, 133 - 137, 31.01.2022
https://doi.org/10.31590/ejosat.1036869

Abstract

In this work, electrochemically exfoliated graphene–chitosan hydrogel was prepared by a crosslinking reagent. Then, a symmetrical all-solid state supercapacitor was fabricated using graphene–chitosan hydrogel. Surface morphology of as-fabricated graphene was investigated using SEM and TEM. After constructing the symmetrical all-solid state supercapacitor, the device showed a specific capacitance (Cm) of 153.6 Fg-1 at 1 mAg-1 current density. A great capacitance retention after 1000 consecutive GCD cycles was observed with an over 97% of retention. The supercapacitor can carry a high energy density of 3.47 kWkg-1, as well as a high power density of 102.07 Wkg-1.

References

  • Bashir, S., Hasan, K., Hina, M., Ali Soomro, R., Mujtaba, M. A., Ramesh, S., … Manikam, R. (2021). Conducting polymer/graphene hydrogel electrodes based aqueous smart Supercapacitors: A review and future prospects. Journal of Electroanalytical Chemistry. Retrieved from https://doi.org/10.1016/j.jelechem.2021.115626
  • Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today. Retrieved from https://doi.org/10.1016/S1369-7021(13)70014-2
  • Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: A review. Journal of Materials Chemistry A. Retrieved from https://doi.org/10.1039/c7ta00863e
  • Bose, S., Kuila, T., Mishra, A. K., Rajasekar, R., Kim, N. H., & Lee, J. H. (2012). Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry. Retrieved from https://doi.org/10.1039/c1jm14468e
  • Cao, X., Jiang, C., Sun, N., Tan, D., Li, Q., Bi, S., & Song, J. (2021). Recent progress in multifunctional hydrogel-based supercapacitors. Journal of Science: Advanced Materials and Devices. Retrieved from https://doi.org/10.1016/j.jsamd.2021.06.002
  • El-Gendy, D. M., Ghany, N. A. A., El Sherbini, E. E. F., & Allam, N. K. (2017). Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors. Scientific Reports, 7. Retrieved from https://doi.org/10.1038/srep43104
  • He, W., Wang, C., Zhuge, F., Deng, X., Xu, X., & Zhai, T. (2017). Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy, 35, 242–250. Retrieved from https://doi.org/10.1016/j.nanoen.2017.03.045
  • Hu, N., Zhang, L., Yang, C., Zhao, J., Yang, Z., Wei, H., … Xu, Z. J. (2016). Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 6. Retrieved from https://doi.org/10.1038/srep19777
  • Ke, Q., & Wang, J. (2016). Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics. Retrieved from https://doi.org/10.1016/j.jmat.2016.01.001
  • Khalid, M., Quispe, L. T., Pla Cid, C. C., Mello, A., Tumelero, M. A., & Pasa, A. A. (2017). The synthesis of highly corrugated graphene and its polyaniline composite for supercapacitors. New Journal of Chemistry, 41(11), 4629–4636. Retrieved from https://doi.org/10.1039/c7nj00024c
  • Khazaeli, A., Godbille-Cardona, G., & Barz, D. P. J. (2020). A Novel Flexible Hybrid Battery–Supercapacitor Based on a Self-Assembled Vanadium-Graphene Hydrogel. Advanced Functional Materials, 30(21). Retrieved from https://doi.org/10.1002/adfm.201910738
  • Lai, L., Chen, L., Zhan, D., Sun, L., Liu, J., Lim, S. H., … Lin, J. (2011). One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon, 49(10), 3250–3257. Retrieved from https://doi.org/10.1016/j.carbon.2011.03.051
  • Mao, S., Yu, K., Chang, J., Steeber, D. A., Ocola, L. E., & Chen, J. (2013). Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Scientific Reports, 3. Retrieved from https://doi.org/10.1038/srep01696
  • Sadak, O. (2021). One-pot scalable synthesis of rGO/AuNPs nanocomposite and its application in enzymatic glucose biosensor. Nanocomposites, 7(1), 44–52. Retrieved from https://doi.org/10.1080/20550324.2021.1917837
  • Sadak, O., Prathap, M. U. A., & Gunasekaran, S. (2019). Facile fabrication of highly ordered polyaniline–exfoliated graphite composite for enhanced charge storage. Carbon, 144, 756–763. Retrieved from https://doi.org/10.1016/j.carbon.2018.12.062
  • Sadak, O., Sundramoorthy, A. K., & Gunasekaran, S. (2017). Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosensors and Bioelectronics, 89, 430–436. Retrieved from https://doi.org/10.1016/j.bios.2016.04.073
  • Sadak, O., Sundramoorthy, A. K., & Gunasekaran, S. (2018). Facile and green synthesis of highly conductive graphene paper. Carbon, 138, 108–117. Retrieved from https://doi.org/10.1016/j.carbon.2018.05.076
  • Sadak, O., Wang, W., Guan, J., Sundramoorthy, A. K., & Gunasekaran, S. (2019). MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors. ACS Applied Nano Materials, 2(12), 4386–4394. Retrieved from https://doi.org/10.1021/acsanm.9b00797
  • Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., & Niu, L. (2009). Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir, 25(20), 12030–12033. Retrieved from https://doi.org/10.1021/la903265p
  • Sollami Delekta, S., Smith, A. D., Li, J., & Östling, M. (2017). Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale, 9(21), 6998–7005. Retrieved from https://doi.org/10.1039/c7nr02204b
  • Udayan, A. P. M., Sadak, O., & Gunasekaran, S. (2020). Metal-Organic Framework/Polyaniline Nanocomposites for Lightweight Energy Storage. ACS Applied Energy Materials, 3(12), 12368–12377. Retrieved from https://doi.org/10.1021/acsaem.0c02376
  • Wang, H., Lin, J., & Shen, Z. X. (2016). Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices. Retrieved from https://doi.org/10.1016/j.jsamd.2016.08.001
  • Wang, W., Sadak, O., Guan, J., & Gunasekaran, S. (2020). Facile synthesis of graphene paper/polypyrrole nanocomposite as electrode for flexible solid-state supercapacitor. Journal of Energy Storage, 30, 101533. Retrieved from https://doi.org/10.1016/j.est.2020.101533
  • Wu, L., Hao, L., Pang, B., Wang, G., Zhang, Y., & Li, X. (2017). MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 5(9), 4629–4637. Retrieved from https://doi.org/10.1039/c6ta10757e
  • Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. Retrieved from https://doi.org/10.1038/nnano.2009.177
  • Xu, Y., Lin, Z., Huang, X., Liu, Y., Huang, Y., & Duan, X. (2013). Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 7(5), 4042–4049. Retrieved from https://doi.org/10.1021/nn4000836
  • Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., & Duan, X. (2013). Functionalized graphene hydrogel-based high-performance supercapacitors. Advanced Materials, 25(40), 5779–5784. Retrieved from https://doi.org/10.1002/adma.201301928
  • Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N. O., Huang, Y., & Duan, X. (2014). Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 5. Retrieved from https://doi.org/10.1038/ncomms5554
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 4(7), 4324–4330. Retrieved from https://doi.org/10.1021/nn101187z
  • Xue, G., Zhong, J., Cheng, Y., & Wang, B. (2016). Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors. Electrochimica Acta, 215, 29–35. Retrieved from https://doi.org/10.1016/j.electacta.2016.08.063
  • Zhang, Li, & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531. Retrieved from https://doi.org/10.1039/b813846j
  • Zhang, Liling, Huang, D., Hu, N., Yang, C., Li, M., Wei, H., … Zhang, Y. (2017). Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. Journal of Power Sources, 342, 1–8. Retrieved from https://doi.org/10.1016/j.jpowsour.2016.11.068
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ömer Sadak 0000-0001-6717-9672

Early Pub Date January 30, 2022
Publication Date January 31, 2022
Published in Issue Year 2022 Issue: 33

Cite

APA Sadak, Ö. (2022). Symmetric Supercapacitor Application of Electrochemically Exfoliated Graphene – Chitosan Hydrogel. Avrupa Bilim Ve Teknoloji Dergisi(33), 133-137. https://doi.org/10.31590/ejosat.1036869