Research Article
BibTex RIS Cite

137Cs Concentration In Soils Collected From Bulgaria-Turkey Border Region

Year 2022, Issue: 33, 244 - 250, 31.01.2022
https://doi.org/10.31590/ejosat.1055855

Abstract

The Chernobyl accident caused artificial radioactive contamination, especially artificial 137Cs radionuclide contamination. Due to having long half-life, 137Cs still continues to remain in soils. In the present study, the surface soil samples were collected from various locations in Bulgaria-Turkey border. The activity concentrations of 137Cs in collected soil samples were determined. In order to investigate the radiological hazard; the dose rates and the annual effective dose rates were estimated. The activity concentrations of artificial 137Cs radionuclide in soils were found to range from 1.71±0.18 Bq kg−1 to 6.99±0.66 Bq kg−1. The mean values of absorbed dose rates, outdoor and indoor annual effective dose rates were found to be 0.10, 4.19, and 16.77 µSv y−1, respectively. The dose rates and the annual effective dose rates were below the worldwide limit values reported by UNSCEAR and ICRP. In addition, statistical data were estimated, frequency distribution and Q-Q plot were used to assess 137Cs distribution.

Supporting Institution

Bulunmamaktadır.

Project Number

Bulunmamaktadır.

Thanks

This work was carried out using HPGe detector at the Central Research Laboratory of Kırklareli University.

References

  • Aközcan, S. (2014). Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environmental earth sciences, 71(10), 4611-4614.
  • Alaamer, A. S. (2012). Characterization of 137 Cs in Riyadh Saudi Arabia Soil Samples.
  • Aslani, M. A., Aytas, S., Akyil, S., Yaprak, G., Yener, G., & Eral, M. (2003). Activity concentration of caesium-137 in agricultural soils. Journal of environmental radioactivity, 65(2), 131-145.
  • Çelik, N., Damla, N., & Çevik, U. (2010). Gamma ray concentrations in soil and building materials in Ordu, Turkey. Radiation Effects & Defects in Solids: Incorporating Plasma Science & Plasma Technology, 165(1), 1-10.
  • Cevik, U. Ğ. U. R., Celik, N., Celik, A., Damla, N., & Coskuncelebi, K. (2009). Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey. Food and Chemical Toxicology, 47(9), 2351-2355.
  • Degerlier, M., Karahan, G., & Ozger, G. (2008). Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey. Journal of environmental radioactivity, 99(7), 1018-1025.
  • El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013). Determination of natural and artificial radioactivity in soil at North Lebanon province. Journal of environmental radioactivity, 125, 36-39.
  • El Samad, O., Zahraman, K., Baydoun, R., & Nasreddine, M. (2007). Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident. Journal of environmental radioactivity, 92(2), 72-79.
  • Hasegawa, A., Tanigawa, K., Ohtsuru, A., Yabe, H., Maeda, M., Shigemura, J., ... & Chhem, R. K. (2015). Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima. The Lancet, 386(9992), 479-488.
  • Karadeniz, Ö., & Yaprak, G. 2007. “Dynamic equilibrium of radiocesium with stable cesium within the soil–mushroom system in Turkish pine forest.” Environmental Pollution 148(1), 316-324.
  • Karataşlı, M., Turhan, Ş., Varinlioğlu, A., & Yeğingil, Z. E. H. R. A. (2016). Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environmental Earth Sciences, 75(5), 424.
  • Kaynar, S. Ç. (2018). Annual effective dose values from 137 Cs activity concentrations in soils of Manisa, Turkey. Nuclear Science and Techniques, 29(7), 1-7.
  • Krstic, D., & Nikezic, D. (2006). External doses to humans from 137Cs in soil. Health physics, 91(3), 249-257.
  • Kılıç, Ö., Belivermiş, M., Topçuoğlu, S., Cotuk, Y., Coşkun, M., Çayır, A., & Küçer, R. (2008). Radioactivity concentrations and dose assessment in surface soil samples from east and south of Marmara region, Turkey. Radiation protection dosimetry, 128(3), 324-330.
  • Mavi, B., & Akkurt, I. (2010). Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiation Physics and Chemistry, 79(9), 933-937.
  • Mori, T., Akamatsu, M., Okamoto, K., Sumita, M., Tateyama, Y., Sakai, H., ... & Ariga, K. (2013). Micrometer-level naked-eye detection of caesium particulates in the solid state. Science and technology of advanced materials.
  • Ohba, T., Tanigawa, K., & Liutsko, L. (2021). Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environment international, 148, 106379.
  • Ozyar, E. (2003). Effects of Chernobyl accident on Turkey. In Environmental Protection Against Radioactive Pollution (pp. 85-88). Springer, Dordrecht.
  • Paul, S., Ghandhi, S. A., Weber, W., Doyle-Eisele, M., Melo, D., Guilmette, R., & Amundson, S. A. (2014). Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiation research, 182(4), 380-389.
  • Rafique, M. (2014). Cesium-137 activity concentrations in soil and brick samples of Mirpur, Azad Kashmir; Pakistan. International Journal of Radiation Research, 12(1), 39.
  • Rosén, K., Öborn, I., & Lönsjö, H. (1999). Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident, 1987–1995. Journal of Environmental Radioactivity, 46(1), 45-66.
  • Smith, H. (1991). 1990 recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection.
  • Tserendorj, D., Szabó, K. Z. S., Völgyesi, P. V., Abbaszade, G., Salazar, N., Zacháry, D., ... & Szabó, C. (2021). Comparative study of Cs-137 activity concentration between attic dust and urban soil from Salgotarjan city, Hungary (No. EGU21-16233). Copernicus Meetings.
  • Top, G., Örgün, Y., Ayazlı, I. E., Belivermiş, M., Karacık, Z., & Kampfl, G. (2021). Determination of Ra-226, Th-232, K-40 and Cs-137 Activities in Soils and Beach Sands and Related External Gamma Doses in Arikli Mineralization Area (Ayvacik/Turkey). Radiation Protection Dosimetry, 193(3-4), 137-154.
  • UNSCEAR, Sources and Effects of Ionizing Radiation. (2000). United Nations Scientific Committee on the Effect of Atomic Radiation Report Vol. 1 to the General Assembly, with Scientific Annexes.
  • Zhiyanski, M., Bech, J., Sokolovska, M., Lucot, E., Bech, J., & Badot, P. M. (2008). Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. Journal of Geochemical Exploration, 96(2-3), 256-266.

Bulgaristan-Türkiye Sınır Bölgesinden Toplanan Topraklarda 137Cs Konsantrasyonu

Year 2022, Issue: 33, 244 - 250, 31.01.2022
https://doi.org/10.31590/ejosat.1055855

Abstract

Chernobyl kazası yapay radyoaktif kirliliğe, özellikle yapay 137Cs radyonüklid kirliliğine neden olmuştur. 137Cs, uzun yarılanma ömrüne sahip olması nedeniyle hala topraklarda bulunmaktadır. Bu çalışmada, yüzey toprak örnekleri Bulgaristan-Türkiye sınırında farklı konumlardan toplanmıştır. Toplanan topraklarda 137Cs aktivite konsantrasyonları hesaplanmıştır. Radyolojik tehlikeyi belirlemek için doz oranları ve yıllık etkin doz oranları tahminleri yapılmıştır. Topraklardaki yapay 137Cs radyonüklid aktivite konsantrasyonları 1.71±0.18 Bq kg−1 ile 6.99±0.66 Bq kg−1 aralığında bulunmuştur. Soğurulan doz oranları, açık hava ve bina içi yıllık etkin doz oranlarının ortalama değerleri sırasıyla 0.10, 4.19, and 16.77 µSv y−1 bulunmuştur. Doz oranları ve yıllık etkin doz oranları, UNSCEAR ve ICRP tarafından raporlanan dünya genelindeki limit değerlerinden daha düşüktür. Ek olarak, istatistiksel veriler hesaplanmış, 137Cs dağılımını belirlemek için frekans dağılımı ve Q-Q çizimi kullanılmıştır.

Project Number

Bulunmamaktadır.

References

  • Aközcan, S. (2014). Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environmental earth sciences, 71(10), 4611-4614.
  • Alaamer, A. S. (2012). Characterization of 137 Cs in Riyadh Saudi Arabia Soil Samples.
  • Aslani, M. A., Aytas, S., Akyil, S., Yaprak, G., Yener, G., & Eral, M. (2003). Activity concentration of caesium-137 in agricultural soils. Journal of environmental radioactivity, 65(2), 131-145.
  • Çelik, N., Damla, N., & Çevik, U. (2010). Gamma ray concentrations in soil and building materials in Ordu, Turkey. Radiation Effects & Defects in Solids: Incorporating Plasma Science & Plasma Technology, 165(1), 1-10.
  • Cevik, U. Ğ. U. R., Celik, N., Celik, A., Damla, N., & Coskuncelebi, K. (2009). Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey. Food and Chemical Toxicology, 47(9), 2351-2355.
  • Degerlier, M., Karahan, G., & Ozger, G. (2008). Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey. Journal of environmental radioactivity, 99(7), 1018-1025.
  • El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013). Determination of natural and artificial radioactivity in soil at North Lebanon province. Journal of environmental radioactivity, 125, 36-39.
  • El Samad, O., Zahraman, K., Baydoun, R., & Nasreddine, M. (2007). Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident. Journal of environmental radioactivity, 92(2), 72-79.
  • Hasegawa, A., Tanigawa, K., Ohtsuru, A., Yabe, H., Maeda, M., Shigemura, J., ... & Chhem, R. K. (2015). Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima. The Lancet, 386(9992), 479-488.
  • Karadeniz, Ö., & Yaprak, G. 2007. “Dynamic equilibrium of radiocesium with stable cesium within the soil–mushroom system in Turkish pine forest.” Environmental Pollution 148(1), 316-324.
  • Karataşlı, M., Turhan, Ş., Varinlioğlu, A., & Yeğingil, Z. E. H. R. A. (2016). Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environmental Earth Sciences, 75(5), 424.
  • Kaynar, S. Ç. (2018). Annual effective dose values from 137 Cs activity concentrations in soils of Manisa, Turkey. Nuclear Science and Techniques, 29(7), 1-7.
  • Krstic, D., & Nikezic, D. (2006). External doses to humans from 137Cs in soil. Health physics, 91(3), 249-257.
  • Kılıç, Ö., Belivermiş, M., Topçuoğlu, S., Cotuk, Y., Coşkun, M., Çayır, A., & Küçer, R. (2008). Radioactivity concentrations and dose assessment in surface soil samples from east and south of Marmara region, Turkey. Radiation protection dosimetry, 128(3), 324-330.
  • Mavi, B., & Akkurt, I. (2010). Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiation Physics and Chemistry, 79(9), 933-937.
  • Mori, T., Akamatsu, M., Okamoto, K., Sumita, M., Tateyama, Y., Sakai, H., ... & Ariga, K. (2013). Micrometer-level naked-eye detection of caesium particulates in the solid state. Science and technology of advanced materials.
  • Ohba, T., Tanigawa, K., & Liutsko, L. (2021). Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environment international, 148, 106379.
  • Ozyar, E. (2003). Effects of Chernobyl accident on Turkey. In Environmental Protection Against Radioactive Pollution (pp. 85-88). Springer, Dordrecht.
  • Paul, S., Ghandhi, S. A., Weber, W., Doyle-Eisele, M., Melo, D., Guilmette, R., & Amundson, S. A. (2014). Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiation research, 182(4), 380-389.
  • Rafique, M. (2014). Cesium-137 activity concentrations in soil and brick samples of Mirpur, Azad Kashmir; Pakistan. International Journal of Radiation Research, 12(1), 39.
  • Rosén, K., Öborn, I., & Lönsjö, H. (1999). Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident, 1987–1995. Journal of Environmental Radioactivity, 46(1), 45-66.
  • Smith, H. (1991). 1990 recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection.
  • Tserendorj, D., Szabó, K. Z. S., Völgyesi, P. V., Abbaszade, G., Salazar, N., Zacháry, D., ... & Szabó, C. (2021). Comparative study of Cs-137 activity concentration between attic dust and urban soil from Salgotarjan city, Hungary (No. EGU21-16233). Copernicus Meetings.
  • Top, G., Örgün, Y., Ayazlı, I. E., Belivermiş, M., Karacık, Z., & Kampfl, G. (2021). Determination of Ra-226, Th-232, K-40 and Cs-137 Activities in Soils and Beach Sands and Related External Gamma Doses in Arikli Mineralization Area (Ayvacik/Turkey). Radiation Protection Dosimetry, 193(3-4), 137-154.
  • UNSCEAR, Sources and Effects of Ionizing Radiation. (2000). United Nations Scientific Committee on the Effect of Atomic Radiation Report Vol. 1 to the General Assembly, with Scientific Annexes.
  • Zhiyanski, M., Bech, J., Sokolovska, M., Lucot, E., Bech, J., & Badot, P. M. (2008). Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. Journal of Geochemical Exploration, 96(2-3), 256-266.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Selin Özden 0000-0003-3860-8444

Project Number Bulunmamaktadır.
Early Pub Date January 30, 2022
Publication Date January 31, 2022
Published in Issue Year 2022 Issue: 33

Cite

APA Özden, S. (2022). 137Cs Concentration In Soils Collected From Bulgaria-Turkey Border Region. Avrupa Bilim Ve Teknoloji Dergisi(33), 244-250. https://doi.org/10.31590/ejosat.1055855