Research Article
BibTex RIS Cite

Evaluation of the Pressure and Wall Shear Stress on the Aneurysm Wall According to the Growth Position of a Femoral Artery Pseudoaneurysm by Numerical Analysis

Year 2022, Issue: 34, 800 - 804, 31.03.2022
https://doi.org/10.31590/ejosat.1076137

Abstract

Bu çalışmada femoral arter psödoanevrizmasında (β) boyun bölgesi ile anevrizma bölgesi arasındaki açı değişiminin anevrizma duvarındaki basınç ve kayma gerilmelerine etkisi hesaplamalı akışkanlar dinamiği (HAD) yöntemi ile araştırıldı. CFD yöntemi, kan akışının yönünü ve hızını gözlemlemede önemli bir araçtır. Sayısal analiz sonuçları ile anevrizmanın büyüme hızı ve rüptür riskinin değerlendirilmesi amaçlandı. Femoral arter ile anevrizma boyun bölgesi arasındaki açının belirli bir değeri (α=45˚) için β açısının 0˚ ile 15˚ arasında değişmesi sonucu elde edilen bulgular, anevrizma içindeki hız vektörlerini içeren grafiklerde sunuldu, anevrizma duvarındaki basınç ve duvar kayma gerilmeleri. Tüm analiz sonuçları değerlendirildiğinde femoral arterde oluşan psödoanevrizma için en yüksek büyüme hızı ve rüptür riskinin β =0˚ açısında olabileceği anlaşıldı. Elde edilen bulguların femoral arter psödoanevrizma tedavisinde tedavi yöntemi ve süresinin belirlenmesinde faydalı olacağı öngörülmüştür.

References

  • McCann RL, Schwartz LB, Pieper KS. Vascular complications of cardiac catheterization. J Vasc Surg 1991; 14: 375–81.
  • Kronzon I. Diagnosis and treatment of iatrogenic femoral artery pseudoaneurysm: a review. J Am Soc Echocardiogr 1997; 10: 236–45.
  • Hirano Y, Ikuta S, Uehara H, et al. Diagnosis of vascular complications at the puncture site after cardiac catheterization. J Cardiol 2004; 43: 259–65.
  • Cope C, Zeit R. Coagulation of aneurysms by direct percutaneous thrombin injection. Am J Roentgenol 1986; 147: 383–7.
  • Franco CD, Goldsmith J, Veith FJ, et al. Management of arterial injuries produced by percutaneous femoral procedures. Surgery 1993; 113: 419–25.
  • Lumsden AB, Miller JM, Kosinski AS, et al. A prospective evaluation of surgically treated groin complications following percutaneous cardiac procedures. Am Surg 1994; 60: 132–7.
  • Yoo T, Starr JE, Go MR, et al. Ultrasound-guided thrombin injection is a safe and effective treatment for femoral artery pseudoaneurysm in the morbidly obese. Vasc Endovascular Surg 2017; 51: 368–72.
  • Stone PA, Campbell JE, AbuRahma AF. Femoral pseudoaneurysms after percutaneous access. J Vasc Surg 2014; 60: 1359-66.
  • Suh S-H, Kim H-H, Choi YH, et al. Computational fluid dynamic modeling of femoral artery pseudoaneurysm. J Mech Sci Technol 2012; 26: 3865–72.
  • Kim H-H, Kim K-W, Lee C, et al. Percutaneous thrombin injection based on computational fluid dynamics of femoral artery pseudoaneurysms. Korean J Radiol 2021; 22: 1834.
  • Siebert MW, Fodor PS. Newtonian and non-newtonian blood flow over a backward-facing step–a case study. In: Proceedings of the COMSOL Conference, Boston. 2009: 27.
  • Qiu X, Fei Z, Zhang J, et al. Influence of high-porosity mesh stent on hemodynamics of intracranial aneurysm: A computational study. J Hydrodyn 2013; 25: 848–55.
  • Kurşun B, Uğur L, Keskin G. Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation. Comput Methods Programs Biomed 2018; 158: 31–40.
  • Launder B. E., B. SD. MAN - ANSYS Fluent User’s Guide Releasde 15.0. Knowl Creat Diffus Util 2013; 15317: 724–46.
  • Sheiman RG, Brophy DP. Treatment of iatrogenic femoral pseudoaneurysms with percutaneous thrombin injection: experience in 54 patients. Radiology 2001; 219: 123–7.
  • Krueger K, Zaehringer M, Strohe D, et al. Postcatheterization pseudoaneurysm: results of US-guided percutaneous thrombin injection in 240 patients. Radiology 2005; 236: 1104–10.
  • Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35: 2500–5.

Evaluation of the Pressure and Wall Shear Stress on the Aneurysm Wall According to the Growth Position of a Femoral Artery Pseudoaneurysm by Numerical Analysis

Year 2022, Issue: 34, 800 - 804, 31.03.2022
https://doi.org/10.31590/ejosat.1076137

Abstract

In this study, the effect of the angle change between the neck region and the aneurysm region of a femoral artery pseudoaneurysm (β) on the pressure and shear stresses on the aneurysm wall was investigated with the computational fluid dynamics (CFD) method. The CFD method is an important tool in observing the direction and velocity of blood flow. With the numerical analysis results, it was aimed to evaluate the growth rate and rupture risk of the aneurysm. Findings obtained as a result of the change of β angle between 0˚ and 15˚ for a certain value of the angle between the femoral artery and the aneurysm neck region (α=45˚) were presented in graphs containing velocity vectors inside the aneurysm, pressure, and wall shear stresses on the aneurysm wall. When all the analysis results were evaluated, it was understood that for a pseudoaneurysm formed in the femoral artery, the highest growth rate and risk of rupture could occur at the β =0˚ angle. It was predicted that the obtained findings will be beneficial in determining the treatment method and time in the treatment of femoral artery pseudoaneurysm.

References

  • McCann RL, Schwartz LB, Pieper KS. Vascular complications of cardiac catheterization. J Vasc Surg 1991; 14: 375–81.
  • Kronzon I. Diagnosis and treatment of iatrogenic femoral artery pseudoaneurysm: a review. J Am Soc Echocardiogr 1997; 10: 236–45.
  • Hirano Y, Ikuta S, Uehara H, et al. Diagnosis of vascular complications at the puncture site after cardiac catheterization. J Cardiol 2004; 43: 259–65.
  • Cope C, Zeit R. Coagulation of aneurysms by direct percutaneous thrombin injection. Am J Roentgenol 1986; 147: 383–7.
  • Franco CD, Goldsmith J, Veith FJ, et al. Management of arterial injuries produced by percutaneous femoral procedures. Surgery 1993; 113: 419–25.
  • Lumsden AB, Miller JM, Kosinski AS, et al. A prospective evaluation of surgically treated groin complications following percutaneous cardiac procedures. Am Surg 1994; 60: 132–7.
  • Yoo T, Starr JE, Go MR, et al. Ultrasound-guided thrombin injection is a safe and effective treatment for femoral artery pseudoaneurysm in the morbidly obese. Vasc Endovascular Surg 2017; 51: 368–72.
  • Stone PA, Campbell JE, AbuRahma AF. Femoral pseudoaneurysms after percutaneous access. J Vasc Surg 2014; 60: 1359-66.
  • Suh S-H, Kim H-H, Choi YH, et al. Computational fluid dynamic modeling of femoral artery pseudoaneurysm. J Mech Sci Technol 2012; 26: 3865–72.
  • Kim H-H, Kim K-W, Lee C, et al. Percutaneous thrombin injection based on computational fluid dynamics of femoral artery pseudoaneurysms. Korean J Radiol 2021; 22: 1834.
  • Siebert MW, Fodor PS. Newtonian and non-newtonian blood flow over a backward-facing step–a case study. In: Proceedings of the COMSOL Conference, Boston. 2009: 27.
  • Qiu X, Fei Z, Zhang J, et al. Influence of high-porosity mesh stent on hemodynamics of intracranial aneurysm: A computational study. J Hydrodyn 2013; 25: 848–55.
  • Kurşun B, Uğur L, Keskin G. Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation. Comput Methods Programs Biomed 2018; 158: 31–40.
  • Launder B. E., B. SD. MAN - ANSYS Fluent User’s Guide Releasde 15.0. Knowl Creat Diffus Util 2013; 15317: 724–46.
  • Sheiman RG, Brophy DP. Treatment of iatrogenic femoral pseudoaneurysms with percutaneous thrombin injection: experience in 54 patients. Radiology 2001; 219: 123–7.
  • Krueger K, Zaehringer M, Strohe D, et al. Postcatheterization pseudoaneurysm: results of US-guided percutaneous thrombin injection in 240 patients. Radiology 2005; 236: 1104–10.
  • Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35: 2500–5.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gökhan Keskin 0000-0002-1695-5624

Ahmet Turan Kaya

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Keskin, G., & Kaya, A. T. (2022). Evaluation of the Pressure and Wall Shear Stress on the Aneurysm Wall According to the Growth Position of a Femoral Artery Pseudoaneurysm by Numerical Analysis. Avrupa Bilim Ve Teknoloji Dergisi(34), 800-804. https://doi.org/10.31590/ejosat.1076137