Research Article
BibTex RIS Cite

The Polynomial Sequence Generalizing the Integer Sequence which Enumerates the Number of Subsets of the Set [n] Including No Two Consecutive Even Integers

Year 2022, Issue: 34, 164 - 169, 31.03.2022
https://doi.org/10.31590/ejosat.1078691

Abstract

Fibonacci polynomial sequence is an extension of Fibonacci sequence. Here we define a polynomial sequence generalizing the integer sequence which enumerates the number of subsets of the set [n] including no two consecutive even integers. The polynomial sequence is associated with the Fibonacci polynomials. Some basic properties of the polynomial sequence are obtained.

References

  • Andrews, G.E. (2004). Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quarterly, 42(1), 3–19.
  • Arslan B. (2016). Sequence A279312 in The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.
  • Falcon, S. and Plaza, A. (2009). On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitions and Fractals, 39, 1005-1019.
  • Hoggatt, Jr. V.E., Bicknell, M. (1973). Generalized Fibonacci polynomials, Fibonacci Quarterly, 11(5), 457-465.
  • Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications, Wiley Interscience Publications, New York.
  • Uslu, K. and Arslan B. (2021). The number of subsets of the set [n] containing no two consecutive even integers, JP Journal of Algebra Number Theory and Applications, 52(2), 243-254.

[n] Kümesinin Ardışık İki Çift Tamsayı İçermeyen Alt Kümelerinin Sayısını Veren Tamsayı Dizisini Genelleyen Polinom Dizisi

Year 2022, Issue: 34, 164 - 169, 31.03.2022
https://doi.org/10.31590/ejosat.1078691

Abstract

Fibonacci polinom dizisi Fibonacci dizisinin bir genişlemesidir. Burada [n] kümesinin ardışık iki tamsayı içermeyen alt kümelerinin sayısını veren tamsayı dizisini genelleyen bir polinom dizisi tanımladık. Bu polinom dizisi Fibonacci polinomları ile ilişkilendirildi. Polinom dizisinin bazı temel özellikleri elde edildi.

References

  • Andrews, G.E. (2004). Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quarterly, 42(1), 3–19.
  • Arslan B. (2016). Sequence A279312 in The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.
  • Falcon, S. and Plaza, A. (2009). On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitions and Fractals, 39, 1005-1019.
  • Hoggatt, Jr. V.E., Bicknell, M. (1973). Generalized Fibonacci polynomials, Fibonacci Quarterly, 11(5), 457-465.
  • Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications, Wiley Interscience Publications, New York.
  • Uslu, K. and Arslan B. (2021). The number of subsets of the set [n] containing no two consecutive even integers, JP Journal of Algebra Number Theory and Applications, 52(2), 243-254.
There are 6 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Barış Arslan 0000-0002-6972-3317

Kemal Uslu 0000-0001-6265-3128

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Arslan, B., & Uslu, K. (2022). The Polynomial Sequence Generalizing the Integer Sequence which Enumerates the Number of Subsets of the Set [n] Including No Two Consecutive Even Integers. Avrupa Bilim Ve Teknoloji Dergisi(34), 164-169. https://doi.org/10.31590/ejosat.1078691