Research Article
BibTex RIS Cite

TurtleBot 3 İle Ros Tabanlı Yol Planlama Uygulaması

Year 2022, Issue: 34, 254 - 258, 31.03.2022
https://doi.org/10.31590/ejosat.1081097

Abstract

Robot İşletim Sistemi (ROS) robotların kontrolünü sağlayan bir işletim sistemidir. Haritalama ve yer tespiti için, ROS içerisindeki Gmapping paketindeki, Eş Zamanlı Konum Belirleme ve Haritalama (SLAM) kullanılır. Gmapping, halihazırda oluşturulmuş olan harita parçaları ve sensör verileri temellidir. Her bir parçacık, robotun geçmiş pozisyon örneği ve harita üzerinde verilen önceki pozisyon örneğinin geçmişinin toplamıdır. Gmapping olasılıksal dağılım modeli robotun son gözlemlerini de hesaba katarak bir yayılım oluşturur. Harita oluşturulduktan sonra robotun hedefe gidebilmesi için yol planlamasının yapılması gerekir. Dijkstra Algoritması, hangi yolların keşfedileceğine öncelik vermemizi sağlar. Tüm olası yolları eşit olarak araştırmak yerine, daha düşük maliyetli yolları tercih eder. Yollarda ilerlemeyi teşvik etmek için daha düşük maliyetler, engellerden kaçınmak için daha yüksek maliyetler ve daha fazlası ayarlayanabilir. Dijkstra Algoritması tüm konumlara giden yolları bulabilir. A* Algoritması, Dijkstra Algoritmasının tek bir hedef için optimize edilmiş bir versiyonudur. A*, bir konuma veya birkaç konumun en yakınına giden yolları bulur. Bir hedefe daha yakın görünen yollara öncelik verir. Bu çalışmada Robot İşletim Sistemi (ROS) tabanlı yol planlama algoritmalarından A* ve Dijkstra’nın, Turtlebot 3 ile uygulaması ve analizi yapılmıştır. Uygulamada hedefe başarılı bir şekilde ulaşılmıştır.

References

  • Bailey,T. ve Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part i The essential algorithms. IEEE Robot Autom. Mag., 13(2): 99-108.
  • Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1, 269–271.
  • Grisetti, G., Stachniss, C. ve Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot., 23(1): 3446.
  • Hart,P. E., Nilsson, N. J. ve Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics. 4 (2): 100–107.
  • Hu, Y., ve Yang, S. X. (2004). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation,. Proceedings. ICRA'04. 2004 (Vol. 5, pp. 4350-4355). IEEE.
  • Kalman, R.E. (1960). A New approach to linear filtering and prediction problems. J. Basic Eng., 82: 35–45.
  • Liang, J. H. ve Lee, C. H. (2015). Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Advances in Engineering Software, 79, 47-56.
  • Mohanty, P. K. ve Parhi, D. R. (2016). Optimal path planning for a mobile robot using cuckoo search algorithm, Journal of Experimental & Theoretical Artificial Intelligence, 28:1-2, 35-52.
  • Pandey, A. ve Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy Wind Driven Optimization algorithm, Defence Technology.
  • Robotis website. (2022 Şubat 25). https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
  • ROS website. (2022 Şubat 25). https://www.ros.org
  • Sariff, N. ve Bunyamin, N. (2006). "An Overview of Autonomous Mobile Robot Path Planning Algorithms", 4th Student Conference on Research and Development, Selangor, Malaysia.
  • Smith, R. ve Cheesman, P. (1987). On the representation of spatial uncertainty. Int. J. Rob. Res., 5(4): 56-68S.
  • TurtleBot website. (2022 Şubat 25). https://www.turtlebot.com/
  • Victerpaul, P., Saravanan, D., Janakiraman, S. ve Pradeep, J. (2017). Path planning of autonomous mobile robots: A survey and comparison, Journal of Advanced Research in Dynamical and Control Systems.
  • YZBS, Yapay Zeka ve Benzetim Sistemleri Arge Laboratuvar websitesi. (2022 Şubat 25). https://www.yapbenzetkocaeli.edu.tr/gazebo-giris/

Ros Based Path Planning Application with TurtleBot 3

Year 2022, Issue: 34, 254 - 258, 31.03.2022
https://doi.org/10.31590/ejosat.1081097

Abstract

Robot Operating System (ROS) is an operating system that provides control of robots. Simultaneous Positioning and Mapping (SLAM) in the Gmapping package in ROS is used for mapping and locating. Gmapping is based on already created map segments and sensor data. Each particle is the sum of the past position example of the robot and the history of the previous position example given on the map. The Gmapping probabilistic distribution model creates a spread, taking into account the robot's last observations. After the map is created, path planning must be done so that the robot can go to the destination. Dijkstra's Algorithm allows us to prioritize which paths to explore. Rather than exploring all possible routes equally, it prefers lower-cost routes. It can set lower costs to encourage progress on roads, higher costs to avoid obstacles, and more. Dijkstra's Algorithm can find paths to all locations. The A* Algorithm is a single-target optimized version of the Dijkstra Algorithm. A* finds paths to a location or the closest of several locations. Prioritizes paths that seem closer to a destination. In this study, the implementation and analysis of Robot Operating System (ROS) based path planning algorithms A* and Dijkstra with Turtlebot 3. In practice, the target has been successfully achieved.

References

  • Bailey,T. ve Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part i The essential algorithms. IEEE Robot Autom. Mag., 13(2): 99-108.
  • Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1, 269–271.
  • Grisetti, G., Stachniss, C. ve Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot., 23(1): 3446.
  • Hart,P. E., Nilsson, N. J. ve Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics. 4 (2): 100–107.
  • Hu, Y., ve Yang, S. X. (2004). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation,. Proceedings. ICRA'04. 2004 (Vol. 5, pp. 4350-4355). IEEE.
  • Kalman, R.E. (1960). A New approach to linear filtering and prediction problems. J. Basic Eng., 82: 35–45.
  • Liang, J. H. ve Lee, C. H. (2015). Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Advances in Engineering Software, 79, 47-56.
  • Mohanty, P. K. ve Parhi, D. R. (2016). Optimal path planning for a mobile robot using cuckoo search algorithm, Journal of Experimental & Theoretical Artificial Intelligence, 28:1-2, 35-52.
  • Pandey, A. ve Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy Wind Driven Optimization algorithm, Defence Technology.
  • Robotis website. (2022 Şubat 25). https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
  • ROS website. (2022 Şubat 25). https://www.ros.org
  • Sariff, N. ve Bunyamin, N. (2006). "An Overview of Autonomous Mobile Robot Path Planning Algorithms", 4th Student Conference on Research and Development, Selangor, Malaysia.
  • Smith, R. ve Cheesman, P. (1987). On the representation of spatial uncertainty. Int. J. Rob. Res., 5(4): 56-68S.
  • TurtleBot website. (2022 Şubat 25). https://www.turtlebot.com/
  • Victerpaul, P., Saravanan, D., Janakiraman, S. ve Pradeep, J. (2017). Path planning of autonomous mobile robots: A survey and comparison, Journal of Advanced Research in Dynamical and Control Systems.
  • YZBS, Yapay Zeka ve Benzetim Sistemleri Arge Laboratuvar websitesi. (2022 Şubat 25). https://www.yapbenzetkocaeli.edu.tr/gazebo-giris/
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hazim İşcan 0000-0002-3698-3745

Ezgisu Tuncel 0000-0001-9068-794X

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA İşcan, H., & Tuncel, E. (2022). TurtleBot 3 İle Ros Tabanlı Yol Planlama Uygulaması. Avrupa Bilim Ve Teknoloji Dergisi(34), 254-258. https://doi.org/10.31590/ejosat.1081097