Research Article
BibTex RIS Cite

Geniş Bantta Düşük Yansıtmalı Kare Örgü Yapılı ve Kuantum Nokta Kaplı Silisyum Nanotüp Kaplı Yüzeyler

Year 2022, Issue: 34, 479 - 484, 31.03.2022
https://doi.org/10.31590/ejosat.1083320

Abstract

Bu çalışmada daha önceki çalışmamızda optimize edilmiş boyutları başlangıç nanoçubuk yapının mimarisi olarak aldık. Nanositun yüksekliği, çapı, doldurma oranı özelliklerine göre optimize edilmiş ve ağırlıklı ortalama ile hesaplanmış yüzey yansıması yüzde 3.75’tir. Tam alanlı sonlu farklar zaman düzlemi metodu kullanılarak 400nm-1100nm spektrumda nanoyapılı yüzeylerden yansıyan ışığın elektrik ve manyetik alanları simüle edilmiştir. Bu makalede, nanoçubukların içindeki oyukların çapı ve kaplanan ince film dielektrik kaplamanın düzensiz kaplanmasının yüzeyden optik yansıma üzerindeki etkisinin sonuçları sunulmuştur. Bu iki parametrenin optimizasyonu ile ağırlıklı ortalama yansıma yüzde 3.35 düzeyine indirilmiştir. Nano örgü yapının üzerine kaplanan kuantum nokta katmanının da etkisi simüle edilmiştir. Bu çalışmada kuantum noktaları Lorentz dielektrik olarak modellenmiştir ve simülasyonlar yansımanın yüzde 3.1 seviyesine indiğini göstermiştir. Optimizasyon reçetesi açık bir şekilde sunulmuştur ve geliştirilen bu metod sadece kare örgülü yapılar için değil fotovoltaikte kullanılan diğer örgülü nanoyapılar için de kullanışlı olacaktır.

Supporting Institution

Tübitak 1001, Abdullah Gül Üniversitesi

Project Number

219M280

Thanks

Bu çalışma TÜBİTAK 1001 programı tarafından 219M280 nolu proje ile desteklenmiştir. Hesaplama işlemleri AGÜ (Abdullah Gül Üniversitesi) tarafından desteklenmiştir.

References

  • B. S. Richards, S. F. Rowlands, C. B. Honsberg, and J. E. Cotter, “TiO2 DLAR coatings for planar silicon solar cells,” Progress in Photovoltaics 11, 27 2003.
  • J. H. Selj, T. T. Mongstad, R. Sondena, and E. S. Marstein, “Reduction of optical losses in colored solar cells with multilayer antireflection coatings,” Solar Energy Materials and Solar Cells 95, 2576 2011.
  • P. Campbell and M. A. Green,“Light Trapping Properties of Pyramidally Textured Surfaces,” Journal of Applied Physics 62, 243 1987.
  • S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Applied Physics Letters 93 2008.
  • S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Progress in Photovoltaics 18, 195 2010.
  • S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Science & Engineering R-Reports 69, 1 2010.
  • K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces ,” Nanotechnology 11, 161 2000.
  • Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770 2007.
  • Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates ,” Optics Letters 24, 1422 1999.
  • P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53 1997.
  • Y. H. Pai, Y. C. Lin, J. L. Tsai, and G. R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array,” Optics Express 19, 1680 2011.
  • H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells ,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 3333 2007.
  • H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Applied Physics Letters 88 2006.
  • H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Progress in Photovoltaics 15, 415 2007.
  • P. Seliger, M. Mahvash, C. M. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” Journal of Applied Physics 100 2006.
  • X. G. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy & Environmental Science 7, 3223 2014.
  • J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light-Science & Applications 3 2014.
  • C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography ,” Nanotechnology 17, 1339 2006.
  • T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur,” Microstructuring of silicon with femtosecond laser pulses,” Applied Physics Letters 73, 1673 1998.
  • Z. P. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal-Assisted Chemical Etching of Silicon: A Review ,” Advanced Materials 23, 285 2011.
  • H. Jansen, M. Deboer, R. Legtenberg, and M. Elwenspoek, “The Black Silicon Method - A Universal Method for Determining The Parameter Setting of A Fluorine-Based Reactive Ion Etcher In Deep Silicon Trench Etching With Profile Control ,” Journal of Micromechanics and Microengineering 5, 115 1995.
  • J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nature Nanotechnology 7, 743 2012.
  • S. Xu, S. Y. Huang, I. Levchenko, H. P. Zhou, D. Y. Wei, S. Q. Xiao, L. X. Xu, W. S. Yan, and K. Ostrikov, “Highly Efficient Silicon Nanoarray Solar Cells by a Single-Step Plasma-Based Process,” Advanced Energy Materials 1, 373 2011.
  • H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Applied Physics Letters 95 2009.
  • H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garin, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency ,” Nature Nanotechnology 10, 624 2015.
  • H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices ,” Nature Materials 9, 205 2010.
  • K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells ,” Applied Physics Letters 93 2008.
  • P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle ,” Nature 244, 281 1973.
  • M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells ,” Nature Photonics 6, 130 2012.
  • P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators ,” Nature Communications 3 2012.
  • K. X. Z. Wang, Z. F. Yu, V. Liu, Y. Cui, and S. H. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings ,” Nano Letters 12, 1616 2012.
  • A. Bielawny, J. Upping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius,” 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Physica Status Solidi a-Applications and Materials Science 205, 2796 2008.
  • J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Optics Express 16, 15238 2008.
  • J. Boroumand, S. Das, A. Vazquez-Guardado, D. Franklin, and D. Chanda,” Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells,” Scientific Reports 6 2016.
  • P. Spinelli and A. Polman, “Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers,” Ieee Journal of Photovoltaics 4, 554 2014.
  • K. J. Yu, L. Gao, J. S. Park, Y. R. Lee, C. J. Corcoran, R. G. Nuzzo, D. Chanda, and J. A. Rogers, “Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells ,” Advanced Energy Materials 3, 1401 2013.
  • A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications ,” Nano Letters 12, 2792 2012.
  • E. Palik, Handbook of Optical Constants of Solids Vol. 1, 1 ed. (Academic Press, 1985).
  • H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-Free Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption ,” Nano Letters 14, 1804 2014.
  • T. Tut, Y. P. Dan, P. Duane, Y. Yu, M. Wober, and K. B. Crozier, “Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors ,” Applied Physics Letters 100 2012.
  • B. L. S. a. R. A. Pryor, “Design of Antireflection Coatings for Textured Silicon Solar Cells ,” Solar Cells 8, 249 1982.
  • D. Shir, J. Yoon, D. Chanda, J. H. Ryu, and J. A. Rogers, “Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement ,” Nano Letters 10, 3041 2010.
  • J. Li, H.u Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting ,” Applied Physics Letters 95, 033102 2009.
  • C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics ,” Optics Express 20, No.1, 125-132 2011.
  • J. Proust, A. Fehrembach, F. Bedu, I. Ozerov, N. Bonod, “Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum ,” Sci. Rep. 6, 24947 2016.
  • J. Kim, S. You, C.Kim, “Surface Texturing of Si with Periodically Arrayed Oblique Nanopillars to Achieve Antireflection ,” Materials 14, 380 2021
  • P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photon. 5, 2 2017.

Broadband Low Reflection Surfaces With Silicon Nano-tube Square Arrays And Quantum Dot Layers

Year 2022, Issue: 34, 479 - 484, 31.03.2022
https://doi.org/10.31590/ejosat.1083320

Abstract

In this study, we take as a starting nanostructure which is already optimized in terms of the silicon nanopillar arrays’ structure pillar height, pillar diameter, and filling ratio such that the optical reflection from its surface is very low (weighted average reflection 3.75 percent). Full-field Finite Difference Time Domain method is used to simulate electric and magnetic fields and calculate the reflection from the modified nanostructured substrate surfaces in 400nm-1100nm spectral range. In this paper, we present the optimization of the structure in terms of the silicon nanotube structure cavity diameter, step coverage of the dielectric thin film. As a result, the weighted reflection is decreased to 3.35 percent. We also want to simulate the quantum dot solution layer deposited over the nanostructure. We modeled the quantum dots as Lorentz dielectric and decreased the optical reflection even lower level of 3.1 percent. Optimization recipe is clearly presented, and the developed method is not only useful for square arrays but also for regular arrays of nanopillars in general for photovoltaic devices.

Project Number

219M280

References

  • B. S. Richards, S. F. Rowlands, C. B. Honsberg, and J. E. Cotter, “TiO2 DLAR coatings for planar silicon solar cells,” Progress in Photovoltaics 11, 27 2003.
  • J. H. Selj, T. T. Mongstad, R. Sondena, and E. S. Marstein, “Reduction of optical losses in colored solar cells with multilayer antireflection coatings,” Solar Energy Materials and Solar Cells 95, 2576 2011.
  • P. Campbell and M. A. Green,“Light Trapping Properties of Pyramidally Textured Surfaces,” Journal of Applied Physics 62, 243 1987.
  • S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Applied Physics Letters 93 2008.
  • S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Progress in Photovoltaics 18, 195 2010.
  • S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Materials Science & Engineering R-Reports 69, 1 2010.
  • K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces ,” Nanotechnology 11, 161 2000.
  • Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770 2007.
  • Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates ,” Optics Letters 24, 1422 1999.
  • P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53 1997.
  • Y. H. Pai, Y. C. Lin, J. L. Tsai, and G. R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array,” Optics Express 19, 1680 2011.
  • H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells ,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 3333 2007.
  • H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Applied Physics Letters 88 2006.
  • H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Progress in Photovoltaics 15, 415 2007.
  • P. Seliger, M. Mahvash, C. M. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” Journal of Applied Physics 100 2006.
  • X. G. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy & Environmental Science 7, 3223 2014.
  • J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light-Science & Applications 3 2014.
  • C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography ,” Nanotechnology 17, 1339 2006.
  • T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur,” Microstructuring of silicon with femtosecond laser pulses,” Applied Physics Letters 73, 1673 1998.
  • Z. P. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal-Assisted Chemical Etching of Silicon: A Review ,” Advanced Materials 23, 285 2011.
  • H. Jansen, M. Deboer, R. Legtenberg, and M. Elwenspoek, “The Black Silicon Method - A Universal Method for Determining The Parameter Setting of A Fluorine-Based Reactive Ion Etcher In Deep Silicon Trench Etching With Profile Control ,” Journal of Micromechanics and Microengineering 5, 115 1995.
  • J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nature Nanotechnology 7, 743 2012.
  • S. Xu, S. Y. Huang, I. Levchenko, H. P. Zhou, D. Y. Wei, S. Q. Xiao, L. X. Xu, W. S. Yan, and K. Ostrikov, “Highly Efficient Silicon Nanoarray Solar Cells by a Single-Step Plasma-Based Process,” Advanced Energy Materials 1, 373 2011.
  • H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Applied Physics Letters 95 2009.
  • H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garin, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency ,” Nature Nanotechnology 10, 624 2015.
  • H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices ,” Nature Materials 9, 205 2010.
  • K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells ,” Applied Physics Letters 93 2008.
  • P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle ,” Nature 244, 281 1973.
  • M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells ,” Nature Photonics 6, 130 2012.
  • P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators ,” Nature Communications 3 2012.
  • K. X. Z. Wang, Z. F. Yu, V. Liu, Y. Cui, and S. H. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings ,” Nano Letters 12, 1616 2012.
  • A. Bielawny, J. Upping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius,” 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Physica Status Solidi a-Applications and Materials Science 205, 2796 2008.
  • J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Optics Express 16, 15238 2008.
  • J. Boroumand, S. Das, A. Vazquez-Guardado, D. Franklin, and D. Chanda,” Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells,” Scientific Reports 6 2016.
  • P. Spinelli and A. Polman, “Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers,” Ieee Journal of Photovoltaics 4, 554 2014.
  • K. J. Yu, L. Gao, J. S. Park, Y. R. Lee, C. J. Corcoran, R. G. Nuzzo, D. Chanda, and J. A. Rogers, “Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells ,” Advanced Energy Materials 3, 1401 2013.
  • A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications ,” Nano Letters 12, 2792 2012.
  • E. Palik, Handbook of Optical Constants of Solids Vol. 1, 1 ed. (Academic Press, 1985).
  • H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-Free Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption ,” Nano Letters 14, 1804 2014.
  • T. Tut, Y. P. Dan, P. Duane, Y. Yu, M. Wober, and K. B. Crozier, “Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors ,” Applied Physics Letters 100 2012.
  • B. L. S. a. R. A. Pryor, “Design of Antireflection Coatings for Textured Silicon Solar Cells ,” Solar Cells 8, 249 1982.
  • D. Shir, J. Yoon, D. Chanda, J. H. Ryu, and J. A. Rogers, “Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement ,” Nano Letters 10, 3041 2010.
  • J. Li, H.u Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting ,” Applied Physics Letters 95, 033102 2009.
  • C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics ,” Optics Express 20, No.1, 125-132 2011.
  • J. Proust, A. Fehrembach, F. Bedu, I. Ozerov, N. Bonod, “Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum ,” Sci. Rep. 6, 24947 2016.
  • J. Kim, S. You, C.Kim, “Surface Texturing of Si with Periodically Arrayed Oblique Nanopillars to Achieve Antireflection ,” Materials 14, 380 2021
  • P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photon. 5, 2 2017.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Turgut Tut 0000-0002-4589-201X

Project Number 219M280
Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Tut, T. (2022). Broadband Low Reflection Surfaces With Silicon Nano-tube Square Arrays And Quantum Dot Layers. Avrupa Bilim Ve Teknoloji Dergisi(34), 479-484. https://doi.org/10.31590/ejosat.1083320