Review
BibTex RIS Cite

5G Hücresel Haberleşme Sistemlerinde Yeni Teknolojiler

Year 2022, Issue: 36, 128 - 133, 31.05.2022
https://doi.org/10.31590/ejosat.1111312

Abstract

Hücresel haberleşme sistemleri "İleri Mobil Telefon Sistemi" olarak bilinen birinci nesil sistemlerden başlayarak sürekli geliştirme
çalışmaları içinde olmuştur. Günümüzde standartlaşma çalışmaları olgunlaşmış ve servis sağlayıcılar tarafından pazara sunulmuş en
güncel hücresel haberleşme sistems beşinci nesil (5G) sistemlerdir. Bu çalışmada amaç 5G sistemler ile birlikte kullanılmak üzere
oluşturulmuş olan teknolojilerin tanıtılmasıdır. Bu teknolojiler; milimetre dalga teknolojisi, küçük hücre teknolojisi, yoğun çoklu
giriş-çoklu çıkış (massive multiple input - multiple output, massive MIMO) teknolojisi, ışın yönlendirme (beamforming) teknolojisi
ve tam çift yönlü teknolojisidir. Bu teknolojileri özetlemek gerekirse, milimetre dalga teknolojisi bant aralığını genişletmeyi sağlar
fakat kullanılan yüksek frekans seviyesi nedeniyle iletim menzili azalır, ayrıca havada ve katı malzemelerde iletim kayıpları
artmaktadır. Bu problemlere çözüm olması amacıyla küçük hücre teknolojisi önerilmiştir. Bu teknolojide daha kısa yakınlıkta
yerleştirilen baz istasyonları kullanılarak iletim mesafesi genişletilmekte ancak daha fazla antene ihtiyaç duyulmaktadır. Söz konusu
çoklu anten ihtiyacına çözüm olarak yoğun MIMO teknolojisi gelişmiştir. Bu teknoloji ile de bir baz istasyonu, aynı anda çok daha
fazla kullanıcıdan sinyal (veri) gönderip alabilir fakat fazla sayıda anten kurulumu sinyaller arası girişime neden olmaktadır. Bu
durumda da ışın yönlendirme teknolojisi kullanılır. Ek olarak, çift yönlü adı verilen teknoloji ile de yüksek verim, düşük gecikme
süreleri elde edilmeye çalışılır. Sonuç olarak 5G de kullanılan tüm teknolojiler birbirinin eksiklerini azaltarak birbirlerini destekler
niteliktedir ve tüm bunları içeren 5G sistemler gelecek vaat eden bir teknolojidir.

References

  • Recommendation ITU-R M.2083 – “IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond”, 2015, http://www.itu.int/rec/R-REC-M.2083
  • Z. Guizani and N. Hamdi, "CRAN H-CRAN and F-RAN for 5G systems: Key capabilities and recent advances", Int. J. Netw. Manag., vol. 27, no. 5, 2017.
  • T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013, doi: 10.1109/ACCESS.2013. 2260813.
  • K. Sakaguchi et al., “Millimeter-wave evolution for 5G cellular networks,” IEICE Trans. Commun., vol. E98B, no. 3, pp. 388–402, 2015, doi: 10.1587/transcom. E98. B.388.
  • A. Nordrum, “Here Comes 5G — Whatever That Is,” IEEE Spectr., vol. 54, pp. 44–45, 2017, [Online]. Available: doi: 10.1109/MSPEC.2017.7802747.
  • C. Interaction, “5G ve Ötesi Sistemler için Mm-Dalga İletişimi Mm-Wave Communications for 5G and Beyond Systems,” pp. 208–211, 2020.
  • T. Nguyen, “Small Cell Networks and the Evolution of 5G-Qorvo.”https://www.qorvo.com/design-hub/blog/ small-cell-networks-and-the-evolution-of-5g (accessed Apr. 26, 2021).
  • M. A. Özaslan, “Kocaeli Üniversitesi Fen Bilimleri Dergisi 5G Baz İstasyonlarının Kapsama Alanına Yönelik Yol Kaybı Analizleri ve Konumlandırılması Path Loss Analyzes and Positioning for Coverage Area of 5G Base Stations,” vol. 4, no. 1, pp. 6–13, 2021.
  • E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, 2014, doi: 10.1109/MCOM.2014.6736761.
  • Ö. B. Akan, “TeraFemto : 5G Mobil İletişim Ağları için Terahertz Femtocell Program Kodu : 1003 Proje No : 113E962,” 2017.
  • V. Jungnickel et al., “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014, doi: 10.1109/MCOM.2014.6815892.
  • M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016, doi: 10.1109/COMST.2016.2532458.
  • O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya, “A Comprehensive Survey of Pilot Contamination in Massive MIMO-5G System,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp. 905–923, 2016, doi: 10.1109/COMST.2015.2504379.
  • W. Liu, S. Han, C. Yang, and C. Sun, “Massive MIMO or small cell network: Who is more energy efficient?,” 2013 IEEE Wirel. Commun. Netw. Conf. Work. WCNCW 2013, no. April 2013, pp. 24–29, 2013, doi: 10.1109/WCNCW.2013.6533309.
  • P. SinghParihar, R. Saraswat, and S. Maheshwari, “Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems,” Int. J. Comput. Appl., vol. 111, no. 5, pp. 4–7, 2015, doi: 10.5120/19532-1175.
  • H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Uplink power efficiency of multiuser MIMO with very large antenna arrays,” 2011 49th Annu. Allert. Conf. Commun. Control. Comput. Allert. 2011, pp. 1272–1279, 2011, doi: 10.1109/Allerton.2011.6120314.
  • E. Bjornson, E. G. Larsson, and M. Debbah, “Optimizing multi-cell massive MIMO for spectral efficiency: How Many users should be scheduled?,” 2014 IEEE Glob. Conf. Signal Inf. Process. Glob. 2014, pp. 612–616, 2014, doi: 10.1109/GlobalSIP.2014.7032190.
  • T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wirel. Commun., vol. 9, no. 11, pp. 3590–3600, 2010, doi: 10.1109/TWC.2010.092810.091092.
  • F. Rusek et al., “Scaling up MIMO : Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, 2013, doi: 10.1109/MSP.2011.2178495.
  • S. K. Sharma, T. E. Bogale, L. B. Le, S. Chatzinotas, X. Wang, and B. Ottersten, “Dynamic Spectrum Sharing in 5G Wireless Networks with Full-Duplex Technology: Recent Advances and Research Challenges,” IEEE Commun. Surv. Tutorials, vol. 20, no. 1, pp. 674–707, 2018, doi: 10.1109/COMST.2017.2773628.
  • R. Askar, J. Chung, Z. Guo, H. Ko, W. Keusgen, and T. Haustein, “Interference handling challenges toward full duplex evolution in 5G and beyond cellular networks,” IEEE Wirel. Commun., vol. 28, no. 1, pp. 51–59, 2021, doi: 10.1109/MWC.001.2000228.
  • X. Zhang, W. Cheng, and H. Zhang, “Full Duplex Transmission in PHY and MAC Layers For 5G Mobile Wireless Networks,” Big Data Cogn. Comput., vol. 2, no. 4, pp. 1–11, 2018, [Online].

Emerging Technologies in 5G Cellular Communication Systems

Year 2022, Issue: 36, 128 - 133, 31.05.2022
https://doi.org/10.31590/ejosat.1111312

Abstract

Starting with the first generation systems known as "Advanced Mobile Phone System", cellular communication systems have always
been in development. Nowadays, the latest cellular communication system whose standardization is mature enough and which has
been put on market by service providers is the fifth generation (5G) system. The aim of this study is to introduce emerging
technologies to be used with 5G. These technologies include millimeter-wave technology, small cell technology, massive MIMO
technology, beamforming technology and full duplex technology. To summarize these technologies; millimeter-wave technology
ensures that the bandwidth is extended, but due to high frequency level used, the signals travel shorter distances and transmission
losses increase in air and solid materials. So small cell technology has been suggested as a solution to this problem. In this technology,
transmission range is extended by using base stations located at shorter proximity, but more antennas are needed. As a solution to the
need for multiple antennas in question, masssive MIMO technology has developed. With this technology, a base station can send and
receive signals (data) from many more users at the same time, but installation of excess antennas causes interference between signals.
In this case, beamforming technology is used. Additionally, the so-called full duplex technology attempts to achieve high efficiency
and low latency. As a result, all these technologies used in 5G are supporting each other by eliminating the others' shortcomings, and
an all-in-one 5G systems are promising technology.

References

  • Recommendation ITU-R M.2083 – “IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond”, 2015, http://www.itu.int/rec/R-REC-M.2083
  • Z. Guizani and N. Hamdi, "CRAN H-CRAN and F-RAN for 5G systems: Key capabilities and recent advances", Int. J. Netw. Manag., vol. 27, no. 5, 2017.
  • T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013, doi: 10.1109/ACCESS.2013. 2260813.
  • K. Sakaguchi et al., “Millimeter-wave evolution for 5G cellular networks,” IEICE Trans. Commun., vol. E98B, no. 3, pp. 388–402, 2015, doi: 10.1587/transcom. E98. B.388.
  • A. Nordrum, “Here Comes 5G — Whatever That Is,” IEEE Spectr., vol. 54, pp. 44–45, 2017, [Online]. Available: doi: 10.1109/MSPEC.2017.7802747.
  • C. Interaction, “5G ve Ötesi Sistemler için Mm-Dalga İletişimi Mm-Wave Communications for 5G and Beyond Systems,” pp. 208–211, 2020.
  • T. Nguyen, “Small Cell Networks and the Evolution of 5G-Qorvo.”https://www.qorvo.com/design-hub/blog/ small-cell-networks-and-the-evolution-of-5g (accessed Apr. 26, 2021).
  • M. A. Özaslan, “Kocaeli Üniversitesi Fen Bilimleri Dergisi 5G Baz İstasyonlarının Kapsama Alanına Yönelik Yol Kaybı Analizleri ve Konumlandırılması Path Loss Analyzes and Positioning for Coverage Area of 5G Base Stations,” vol. 4, no. 1, pp. 6–13, 2021.
  • E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, 2014, doi: 10.1109/MCOM.2014.6736761.
  • Ö. B. Akan, “TeraFemto : 5G Mobil İletişim Ağları için Terahertz Femtocell Program Kodu : 1003 Proje No : 113E962,” 2017.
  • V. Jungnickel et al., “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014, doi: 10.1109/MCOM.2014.6815892.
  • M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016, doi: 10.1109/COMST.2016.2532458.
  • O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya, “A Comprehensive Survey of Pilot Contamination in Massive MIMO-5G System,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp. 905–923, 2016, doi: 10.1109/COMST.2015.2504379.
  • W. Liu, S. Han, C. Yang, and C. Sun, “Massive MIMO or small cell network: Who is more energy efficient?,” 2013 IEEE Wirel. Commun. Netw. Conf. Work. WCNCW 2013, no. April 2013, pp. 24–29, 2013, doi: 10.1109/WCNCW.2013.6533309.
  • P. SinghParihar, R. Saraswat, and S. Maheshwari, “Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems,” Int. J. Comput. Appl., vol. 111, no. 5, pp. 4–7, 2015, doi: 10.5120/19532-1175.
  • H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Uplink power efficiency of multiuser MIMO with very large antenna arrays,” 2011 49th Annu. Allert. Conf. Commun. Control. Comput. Allert. 2011, pp. 1272–1279, 2011, doi: 10.1109/Allerton.2011.6120314.
  • E. Bjornson, E. G. Larsson, and M. Debbah, “Optimizing multi-cell massive MIMO for spectral efficiency: How Many users should be scheduled?,” 2014 IEEE Glob. Conf. Signal Inf. Process. Glob. 2014, pp. 612–616, 2014, doi: 10.1109/GlobalSIP.2014.7032190.
  • T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wirel. Commun., vol. 9, no. 11, pp. 3590–3600, 2010, doi: 10.1109/TWC.2010.092810.091092.
  • F. Rusek et al., “Scaling up MIMO : Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, 2013, doi: 10.1109/MSP.2011.2178495.
  • S. K. Sharma, T. E. Bogale, L. B. Le, S. Chatzinotas, X. Wang, and B. Ottersten, “Dynamic Spectrum Sharing in 5G Wireless Networks with Full-Duplex Technology: Recent Advances and Research Challenges,” IEEE Commun. Surv. Tutorials, vol. 20, no. 1, pp. 674–707, 2018, doi: 10.1109/COMST.2017.2773628.
  • R. Askar, J. Chung, Z. Guo, H. Ko, W. Keusgen, and T. Haustein, “Interference handling challenges toward full duplex evolution in 5G and beyond cellular networks,” IEEE Wirel. Commun., vol. 28, no. 1, pp. 51–59, 2021, doi: 10.1109/MWC.001.2000228.
  • X. Zhang, W. Cheng, and H. Zhang, “Full Duplex Transmission in PHY and MAC Layers For 5G Mobile Wireless Networks,” Big Data Cogn. Comput., vol. 2, no. 4, pp. 1–11, 2018, [Online].
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burak Türer 0000-0002-5772-1074

Mümtaz Yılmaz 0000-0002-1121-7331

Early Pub Date April 11, 2022
Publication Date May 31, 2022
Published in Issue Year 2022 Issue: 36

Cite

APA Türer, B., & Yılmaz, M. (2022). 5G Hücresel Haberleşme Sistemlerinde Yeni Teknolojiler. Avrupa Bilim Ve Teknoloji Dergisi(36), 128-133. https://doi.org/10.31590/ejosat.1111312

Cited By

İnteraktif Mekân Kurgulu Akıllı Evlerin Hasta Bakımındaki Rolü
Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi
https://doi.org/10.51764/smutgd.1523487