Research Article
BibTex RIS Cite

Tribonacci Sayıları ile İlişkili Bir Tamsayı Dizisini Genelleyen Polinom Dizisi

Year 2022, Issue: 36, 185 - 190, 31.05.2022
https://doi.org/10.31590/ejosat.1113886

Abstract

Tribonacci polinom dizileri Tribonacci sayılarının bir genişlemesidir. {1, 2, . . . ,n } kümesinin ardışık üç çift tam sayı içermeyen S alt kümelerinin sayısını veren tam sayı dizisini göz önüne aldık. Bu tamsayı dizisini genelleyen bir polinom dizisi tanımladık. Polinom dizisi Tribonacci polinomları ile ilişkilendirildi. Bu polinom dizisinin kapalı formülünü bulduk ve polinom dizisinin bazı temel özelliklerini elde ettik.

References

  • Arslan, B. and Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Even Integers, European Journal of Science and Technology, (28), pp. 552-556.
  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, pp. 67-69.
  • Hoggatt V. E. and Bicknell, M. (1973). Generalized Fibonacci polynomials, Fibonacci Quarterly, Vol. 11, pp. 457–465.
  • Kocer E. G. and Gedikli, H. (2016). Trivariate Fibonacci and Lucas polynomials,’’ Konuralp J. Math., 4, pp. 247–254.
  • Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications, Wiley Interscience Publications, New York.
  • Ramirez, J. L. and Sirvent, V. F. (2014). Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences,17, Article 14.4.2.
  • Rybołowicz, B. & Tereszkiewicz, A. (2018). Generalized Tricobsthal and generalized Tribonacci polynomials,” Applied Mathematics and Computation, 325, pp. 297–308.
  • Yilmaz, N. and Taskara, N. (2014). Incomplete Tribonacci–Lucas Numbers and Polynomials.’’ Advances in Applied Clifford Algebras, 25, pp. 741-753.
  • Yogesh Kumar Gupta, Badshah, V. H., Mamta Singh, Kiran Sisodiya. (2016). Some Identities of Tribonacci Polynomials, Turkish Journal of Analysis and Number Theory. Vol. 4, No. 1, pp. 20-22.

A Polynomial Sequence Generalizing an Integer Sequence Associated with Tribonacci Numbers

Year 2022, Issue: 36, 185 - 190, 31.05.2022
https://doi.org/10.31590/ejosat.1113886

Abstract

Tribonacci polynomial sequence is an extension of Tribonacci numbers. We consider an integer sequence enumerating the number of subsets of S of the set [n]={1,2, . . . ,n } containing no three consecutive even integers. We define a polynomial sequence generalizing this integer sequence. The polynomial sequence is associated with the Tribonacci polynomials. We find the closed form formula and derive some basic properties of the polynomial sequence.

References

  • Arslan, B. and Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Even Integers, European Journal of Science and Technology, (28), pp. 552-556.
  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, pp. 67-69.
  • Hoggatt V. E. and Bicknell, M. (1973). Generalized Fibonacci polynomials, Fibonacci Quarterly, Vol. 11, pp. 457–465.
  • Kocer E. G. and Gedikli, H. (2016). Trivariate Fibonacci and Lucas polynomials,’’ Konuralp J. Math., 4, pp. 247–254.
  • Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications, Wiley Interscience Publications, New York.
  • Ramirez, J. L. and Sirvent, V. F. (2014). Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences,17, Article 14.4.2.
  • Rybołowicz, B. & Tereszkiewicz, A. (2018). Generalized Tricobsthal and generalized Tribonacci polynomials,” Applied Mathematics and Computation, 325, pp. 297–308.
  • Yilmaz, N. and Taskara, N. (2014). Incomplete Tribonacci–Lucas Numbers and Polynomials.’’ Advances in Applied Clifford Algebras, 25, pp. 741-753.
  • Yogesh Kumar Gupta, Badshah, V. H., Mamta Singh, Kiran Sisodiya. (2016). Some Identities of Tribonacci Polynomials, Turkish Journal of Analysis and Number Theory. Vol. 4, No. 1, pp. 20-22.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Barış Arslan 0000-0002-6972-3317

Kemal Uslu 0000-0001-6265-3128

Early Pub Date April 11, 2022
Publication Date May 31, 2022
Published in Issue Year 2022 Issue: 36

Cite

APA Arslan, B., & Uslu, K. (2022). A Polynomial Sequence Generalizing an Integer Sequence Associated with Tribonacci Numbers. Avrupa Bilim Ve Teknoloji Dergisi(36), 185-190. https://doi.org/10.31590/ejosat.1113886