Bilinmeyen ortamlarda çalışabilen akıllı otonom mobil robot sistemi üretimi zorluklar içerebilir. Otonom mobil robot geliştirilmesi için çevreyi tanımlamak amacıyla algılayıcılar ve kameradan veri toplanması, mevcut köşe noktalarının bilinmesi ve robotun konumu ve yönünün anlaşılması gerekir. Son yıllarda mobil robotların otonom hareketi ve nesne belirleme hedefleri için yazılmış algoritmalar sunan çok sayıda araştırma yapılmıştır. Robot hareket tasarımı için en yaygın kullanılan platform ROS (Robot İşletim Sistemi) iken, nesne belirleme içinse YOLO (You Only Look Once) genel kabul görmektedir. Ek olarak, otonom sistemlerde lidar ve diğer algılama yöntemleriyle engeller içeren ortamlarda hareket kontrolü için gereken geri besleme işaretini üretmek üzere sistematik hareket planlamaya ihtiyaç duyulmaktadır. Mobil robotlar için en etkili ve çok yönlü geri beslemeli sistemlerden biri, yüksek çözünürlüklü kamerayla gerçek zamanlı görüntü işleme ve geri beslemeli kontrol karar işareti üretimine dayanan görsel geri besleme yoluyla imal edilebilir. Görsel geri besleme otonom mobil robotların algılayıcılar olmadan geri beslemeli kontrolü için kullanılabileceği gibi, hareket kontrolüyle birlikte yol planlama, engelden kaçınma, nesne belirleme, nesne tanıma gibi çoklu görevlerde de kullanılabilir. Bu çalışmada, akan görüntü verisi kullanılarak kurban / kazazedeleri bulmaya yarayan otonom mobil robot sisteminin tasarım ve üretimi ile ilgili sonuçlar sunulmaktadır. Burada kamera görüntüsünü hem veri toplama hem de otonom mobil robot sisteminde geri besleme işaretini üretme amacıyla kullanarak kurban / kazazedeleri bulmak amaçlanmıştır. Görsel geri besleme ve YOLO v3 sadece kurban / kazazedeleri bulmak için değil aynı zamanda hareket kontrolü için kullanılmaktadır. Ürettiğimiz otonom mobil robot, ROS küresel planlayıcı ile kurban / kazazede yönüne doğru yumuşak bir hareketle ilerlemek ve engellerden kaçınmak için tasarlanmıştır. Robot farklı engel ve kurban / kazazede sayları için değişken ortamlardaki senaryolar için test edilmiş ve yüksek başarımlı tatmin edici sonuçlar elde edilmiştir.
Otonom mobil robot ROS YOLO Hareket planlama Engelden kaçınma LIDAR Görsel geri beslemeli sistem
The construction of a smart autonomous mobile robot system that can operate in an anonymous environment can be difficult. Building an autonomous mobile robot requires collecting data from sensors and cameras in order to recognize the surrounding environment, get knowledge of existing landmarks, and figure out its position and orientation. Many research studies have been carried out in recent years providing algorithms for achieving autonomous motion of mobile robot systems and object detection. The most common platform utilized for robot motion design is ROS (Robot Operating System) and for object detection YOLO (You Only Look Once) is a common choice. Additionally, the autonomous system needs motion planning in a systematic way to avoid obstacles by using LIDAR or other sensing methods generating the feedback signals required for control of motion around occupied spaces. One of the most effective and versatile feedback systems for mobile robot control can be constructed using visual feedback, which relies on a high-resolution camera that processes the image in real-time and the result is fed back to the control system for decision making. Visual feedback can be employed alone without sensors for feedback control of autonomous mobile robots, and it can be used for multiple tasks like path planning, obstacle avoidance, object detection, object recognition in addition to motion control. In this research, results of design and construction of an autonomous mobile rescue robot for finding victims through video data are presented. It is aimed to find victims via applying video as a data collection and feedback generation tool in the autonomous mobile robot control system. The visual feedback and YOLO v3 are used not only for finding victims but also for motion control. Our autonomous mobile robot is designed to move smoothly to the victim's direction and avoids obstacles by using ROS Global Planner. The robot is tested in multiple scenarios in different locations, various obstacle and victim numbers, and satisfactory results with good performances are obtained.
Autonomous mobile robot ROS YOLO Motion planning Obstacle avoidance LIDAR Visual feedback system
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Early Pub Date | June 30, 2022 |
Publication Date | July 15, 2022 |
Published in Issue | Year 2022 Issue: 37 |