Research Article
BibTex RIS Cite

Effects of Heat Treatment on Magnetic Properties of NdFeB Based Permanent Magnet Alloys

Year 2022, Issue: 39, 9 - 12, 31.07.2022
https://doi.org/10.31590/ejosat.1142054

Abstract

In this study, the effect of flash annealing heat treatment applied at 680 oC for 5 minutes on the magnetic properties of NdFeB-based permanent magnet alloys produced by melt spinning method, which is one of the fast solidification methods, was investigated by using a very fast heating and cooling rate of 300 K/s. The obtained results showed that there was a remarkable improvement in the magnetic properties of the alloys with the applied heat treatment. Mainly, the hard magnetic properties were optimized by enhancing magnetic remanence from 21.64 emu/g to 55.76 emu/g, magnetic coercivity from 1184.15 Oe to 9146.30 Oe, and maximum energy product from 4.06 kJ/m3 to 62.02 kJ/m3 respectively.

References

  • S. J. Z. Haofeng, L. Hongmei, Influence of Heat Treatment on Microstructures and Properties of Nd8Fe78B6Co4 Alloy, J. Rare Earths. 2 (2006) 4–6.
  • X. Lin, Y. Luo, H. Peng, Y. Yang, Y. Dou, Z. Wang, K. Xu, S. Diao, D. Yu, Phase structure evolution and magnetic properties of La / Ce doped melt- spun NdFeB alloys, J. Magn. Magn. Mater. 490 (2019) 165454. https://doi.org/10.1016/j.jmmm.2019.165454.
  • H. Jin, P. Afiuny, T. Mcintyre, Y. Yih, J.W. Sutherland, Comparative Life Cycle Assessment of NdFeB Magnets: Virgin Production versus Magnet-to-Magnet Recycling, Procedia CIRP. 48 (2016) 45–50. https://doi.org/10.1016/j.procir.2016.03.013.
  • E.E. Kaya, O. Kaya, S. Stopic, S. Gürmen, B. Friedrich, NdFeB Magnets Recycling Process: An Alternative Method to Produce Mixed Rare Earth Oxide from Scrap NdFeB Magnets, Metals (Basel). 716 (2021) 1–13. https://doi.org/https://doi.org/10.3390/met11050716.
  • H.S.-A. K. Hono, Strategy for high-coercivity Nd – Fe – B magnets, Scr. Mater. 67 (2012) 530–535. https://doi.org/10.1016/j.scriptamat.2012.06.038.
  • T. Elwert, D. Goldmann, F. Roemer, S. Schwarz, Recycling of NdFeB Magnets from Electric Drive Motors of (Hybrid) Electric Vehicles, J. Sustain. Metall. 3 (2017) 108–121. https://doi.org/10.1007/s40831-016-0085-1.
  • D.P. M. M. Codescu, W. Kappel, M. Dumitrache, Corrosion tests on alloys and permanent magnets based on NdFeB, used in aerospace industry, J. Optoelectron. Adv. Mater. 10 (2008) 790–793.
  • M. Lv, T. Kong, W. Zhang, M. Zhu, H. Jin, W. Li, Progress on modification of microstructures and magnetic properties of Nd- Fe-B magnets by the grain boundary diffusion engineering, J. Magn. Magn. Mater. 517 (2021). https://doi.org/10.1016/j.jmmm.2020.167278.
  • K.B. Y. Yang, A. Walton, R. Sheridan, K. Güth, R. GauB, O. Gutfleisch, M. Buchert, B. Steenari, T. V. Gerven, P. T. Jones, REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review, J. Sustain. Met. (2017) 122–149. https://doi.org/10.1007/s40831-016-0090-4.
  • B. Michalski, M. Szymanski, K. Gola, J. Zygmuntowicz, Experimental evidence for the suitability of the hydrogen decomposition process for the recycling of Nd-Fe-B sintered magnets, J. Magn. Magn. Mater. 548 (2022) 1–8. https://doi.org/10.1016/j.jmmm.2021.168979.
  • D. Brown, B. Ma, Z. Chen, Developments in the processing and properties of NdFeb-type permanent magnets, J. Magn. Magn. Mater. 248 (2002) 432–440.
  • M.F. Kılıçaslan, Y. Yılmaz, B. Akgül, H. Karataş, C.D. Vurdu, Effect of Fe-Ni Substitution in FeNiSiB Soft Magnetic Alloys Produced by Melt Spinning, Adv. Mater. Sci. 21 (2021) 79–89. https://doi.org/10.2478/adms-2021-0026.
  • H.C. Hua, G.Y. Wang, C.H. Zheng, G.X. Huang, Q.Z. Xu, L.H. Wu, S.Y. Shi, Microstructure of melt-spun NdFeB magnet, Mater. Lett. 7 (1988) 65–67. https://doi.org/10.1016/0167-577X(88)90085-7.
  • W.F. Li, T. Ohkubo, K. Hono, M. Sagawa, The origin of coercivity decrease in fine grained Nd-Fe-B sintered magnets, J. Magn. Magn. Mater. 321 (2009) 1100–1105. https://doi.org/10.1016/j.jmmm.2008.10.032.
  • Z.Y. Zhang, L.Z. Zhao, X.C. Zhong, D.L. Jiao, Z.W. Liu, Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment, J. Magn. Magn. Mater. 441 (2017) 429–435. https://doi.org/10.1016/j.jmmm.2017.06.028.
  • M. Zhang, W. Zhang, F. Chen, Y. Guo, F. Li, W. Liu, Effect of Heat Treatment on Microstructure and Magnetic Properties of Ce-Doped NdFeB Ribbons, J. Supercond. Nov. Magn. (2018) 2811–2816. https://doi.org/10.1007/s10948-017-4553-z.
  • W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 10th ed., Wiley, 2018.
  • S. Caglar, M.F. Kilicaslan, A. Atasoy, H. Tiryaki, M. Erkovan, S. jik Hong, Effect of heat treatment on magnetic properties of nanocomposite Nd-lean Nd7Fe73B20 ribbons, J. Mater. Sci. Mater. Electron. 32 (2021) 2338–2345. https://doi.org/10.1007/s10854-020-04999-9.
  • L.W. N. Haiyang, Z. Liqun, L. Huicong, Effect of Cathodic Hydrogen Evolution on the Coercivity and Thermal Stability of Sintered NdFeB Magnets, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 46 (2017) 3658–3662. https://doi.org/10.1016/s1875-5372(18)30053-5.
  • W. Yupu, Y.O.U. Caiyin, W. Junwei, T. Na, L.U. Zhengxin, Coercivity enhancement of Nd 2 Fe 14 B / Į-Fe nanocomposite magnets through neodymium diffusion under annealing, J. Rare Earths. 30 (2012) 757–760. https://doi.org/10.1016/S1002-0721(12)60125-2.

Effects of Heat Treatment on Magnetic Properties of NdFeB Based Permanent Magnet Alloys

Year 2022, Issue: 39, 9 - 12, 31.07.2022
https://doi.org/10.31590/ejosat.1142054

Abstract

In this study, the effect of flash annealing heat treatment applied at 680 oC for 5 minutes on the magnetic properties of NdFeB-based permanent magnet alloys produced by melt spinning method, which is one of the fast solidification methods, was investigated by using a very fast heating and cooling rate of 300 K/s. The obtained results showed that there was a remarkable improvement in the magnetic properties of the alloys with the applied heat treatment. Mainly, the hard magnetic properties were optimized by enhancing magnetic remanence from 21.64 emu/g to 55.76 emu/g, magnetic coercivity from 1184.15 Oe to 9146.30 Oe, and maximum energy product from 4.06 kJ/m3 to 62.02 kJ/m3 respectively.

References

  • S. J. Z. Haofeng, L. Hongmei, Influence of Heat Treatment on Microstructures and Properties of Nd8Fe78B6Co4 Alloy, J. Rare Earths. 2 (2006) 4–6.
  • X. Lin, Y. Luo, H. Peng, Y. Yang, Y. Dou, Z. Wang, K. Xu, S. Diao, D. Yu, Phase structure evolution and magnetic properties of La / Ce doped melt- spun NdFeB alloys, J. Magn. Magn. Mater. 490 (2019) 165454. https://doi.org/10.1016/j.jmmm.2019.165454.
  • H. Jin, P. Afiuny, T. Mcintyre, Y. Yih, J.W. Sutherland, Comparative Life Cycle Assessment of NdFeB Magnets: Virgin Production versus Magnet-to-Magnet Recycling, Procedia CIRP. 48 (2016) 45–50. https://doi.org/10.1016/j.procir.2016.03.013.
  • E.E. Kaya, O. Kaya, S. Stopic, S. Gürmen, B. Friedrich, NdFeB Magnets Recycling Process: An Alternative Method to Produce Mixed Rare Earth Oxide from Scrap NdFeB Magnets, Metals (Basel). 716 (2021) 1–13. https://doi.org/https://doi.org/10.3390/met11050716.
  • H.S.-A. K. Hono, Strategy for high-coercivity Nd – Fe – B magnets, Scr. Mater. 67 (2012) 530–535. https://doi.org/10.1016/j.scriptamat.2012.06.038.
  • T. Elwert, D. Goldmann, F. Roemer, S. Schwarz, Recycling of NdFeB Magnets from Electric Drive Motors of (Hybrid) Electric Vehicles, J. Sustain. Metall. 3 (2017) 108–121. https://doi.org/10.1007/s40831-016-0085-1.
  • D.P. M. M. Codescu, W. Kappel, M. Dumitrache, Corrosion tests on alloys and permanent magnets based on NdFeB, used in aerospace industry, J. Optoelectron. Adv. Mater. 10 (2008) 790–793.
  • M. Lv, T. Kong, W. Zhang, M. Zhu, H. Jin, W. Li, Progress on modification of microstructures and magnetic properties of Nd- Fe-B magnets by the grain boundary diffusion engineering, J. Magn. Magn. Mater. 517 (2021). https://doi.org/10.1016/j.jmmm.2020.167278.
  • K.B. Y. Yang, A. Walton, R. Sheridan, K. Güth, R. GauB, O. Gutfleisch, M. Buchert, B. Steenari, T. V. Gerven, P. T. Jones, REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review, J. Sustain. Met. (2017) 122–149. https://doi.org/10.1007/s40831-016-0090-4.
  • B. Michalski, M. Szymanski, K. Gola, J. Zygmuntowicz, Experimental evidence for the suitability of the hydrogen decomposition process for the recycling of Nd-Fe-B sintered magnets, J. Magn. Magn. Mater. 548 (2022) 1–8. https://doi.org/10.1016/j.jmmm.2021.168979.
  • D. Brown, B. Ma, Z. Chen, Developments in the processing and properties of NdFeb-type permanent magnets, J. Magn. Magn. Mater. 248 (2002) 432–440.
  • M.F. Kılıçaslan, Y. Yılmaz, B. Akgül, H. Karataş, C.D. Vurdu, Effect of Fe-Ni Substitution in FeNiSiB Soft Magnetic Alloys Produced by Melt Spinning, Adv. Mater. Sci. 21 (2021) 79–89. https://doi.org/10.2478/adms-2021-0026.
  • H.C. Hua, G.Y. Wang, C.H. Zheng, G.X. Huang, Q.Z. Xu, L.H. Wu, S.Y. Shi, Microstructure of melt-spun NdFeB magnet, Mater. Lett. 7 (1988) 65–67. https://doi.org/10.1016/0167-577X(88)90085-7.
  • W.F. Li, T. Ohkubo, K. Hono, M. Sagawa, The origin of coercivity decrease in fine grained Nd-Fe-B sintered magnets, J. Magn. Magn. Mater. 321 (2009) 1100–1105. https://doi.org/10.1016/j.jmmm.2008.10.032.
  • Z.Y. Zhang, L.Z. Zhao, X.C. Zhong, D.L. Jiao, Z.W. Liu, Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment, J. Magn. Magn. Mater. 441 (2017) 429–435. https://doi.org/10.1016/j.jmmm.2017.06.028.
  • M. Zhang, W. Zhang, F. Chen, Y. Guo, F. Li, W. Liu, Effect of Heat Treatment on Microstructure and Magnetic Properties of Ce-Doped NdFeB Ribbons, J. Supercond. Nov. Magn. (2018) 2811–2816. https://doi.org/10.1007/s10948-017-4553-z.
  • W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 10th ed., Wiley, 2018.
  • S. Caglar, M.F. Kilicaslan, A. Atasoy, H. Tiryaki, M. Erkovan, S. jik Hong, Effect of heat treatment on magnetic properties of nanocomposite Nd-lean Nd7Fe73B20 ribbons, J. Mater. Sci. Mater. Electron. 32 (2021) 2338–2345. https://doi.org/10.1007/s10854-020-04999-9.
  • L.W. N. Haiyang, Z. Liqun, L. Huicong, Effect of Cathodic Hydrogen Evolution on the Coercivity and Thermal Stability of Sintered NdFeB Magnets, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 46 (2017) 3658–3662. https://doi.org/10.1016/s1875-5372(18)30053-5.
  • W. Yupu, Y.O.U. Caiyin, W. Junwei, T. Na, L.U. Zhengxin, Coercivity enhancement of Nd 2 Fe 14 B / Į-Fe nanocomposite magnets through neodymium diffusion under annealing, J. Rare Earths. 30 (2012) 757–760. https://doi.org/10.1016/S1002-0721(12)60125-2.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muhammed Fatih Kılıçaslan 0000-0001-8507-3900

Yasin Yılmaz 0000-0003-0690-8004

Bekir Akgül 0000-0002-4744-9097

Early Pub Date July 26, 2022
Publication Date July 31, 2022
Published in Issue Year 2022 Issue: 39

Cite

APA Kılıçaslan, M. F., Yılmaz, Y., & Akgül, B. (2022). Effects of Heat Treatment on Magnetic Properties of NdFeB Based Permanent Magnet Alloys. Avrupa Bilim Ve Teknoloji Dergisi(39), 9-12. https://doi.org/10.31590/ejosat.1142054