Research Article
BibTex RIS Cite

SMDA Motorun Hız ve Konum Kontrolü için PID Sinir Ağı Denetleyicinin Tasarım ve Benzetimi

Year 2022, Issue: 44, 46 - 50, 31.12.2022
https://doi.org/10.31590/ejosat.1222247

Abstract

Doğru akım (DA) motorları, çeşitli uygulamalarda açısal hız kontrol edilirken birçok zorluk içerir. DA motorların doğrusal olmayan özellikleri, tasarım kısıtlamaları ve çalışma koşullarından kaynaklanan mekanik varyasyon nedeniyle mükemmel kontrol tek başına geleneksel kontrol yöntemleri ile gerçekleştirilemez. Bu çalışma, sabit mıknatıslı bir DA (SMDA) motorun hızını iki yöntemle kontrol etmek için yapay sinir ağı tabanlı bir PID denetleyici tasarımı önermektedir. Her iki yöntemin benzetim sonuçlarına dayalı olarak detaylı bir analiz yapılmıştır. Önerilen denetleyiciler, ayar noktası değişiklikleri, yük torkundaki adım değişiklikleri ve parametre varyasyonları dahil olmak üzere çeşitli test koşulları için sayısal olarak simüle edilmiştir; ardından önerilen teknikler, denetleyicilerin başarımını doğrulamak için geçici tepki özelliklerine ve başarım endekslerine dayalı olarak geleneksel bir PID denetleyici ile karşılaştırılmıştır. Benzetim sonuçları, denetleyicilerin iyileştirilmiş dinamiklere, iyileştirilmiş statik performansa ve daha az en büyük aşmaya sahip olduğunu göstermiştir. Burada açıklanan yöntemler, farklı çalışma aralıklarında hem nominal hem de bozulmuş test koşulları altında geleneksel kontrol yaklaşımlarından daha etkili bir şekilde kontrol sağlamıştır.

References

  • Bansal, U.K., & Narvey, R. (2013). Speed Control of DC Motor Using Fuzzy PID Controller, Advance in Electronic and Electric Engineering 3(9).1209-1220.
  • Antonio E. B. Ruano (1992). Applications of Neural Networks to Control Systems, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. University of Wales, Bangor.
  • Vassilyev, S.N., Kelina, A.Yu., Kudinov, Y.I., & Pashchenko, Fedor F. (2017). Intelligent Control Systems. Procedia Computer Science. 103. 623-628.
  • Tuna, M., Fidan, C. B., Kocabey, S., & Görgülü, S. (2015). Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads, Journal of Electrical Engineering and Technology. 10(5), 2170-2178.
  • Gücin, T. N., Biberoğlu, M., Fincan, B., & Gülbahçe, M. O. (2015). Tuning cascade PI(D) controllers in PMDC motor drives: A performance comparison for different types of tuning methods, Proceedings of the 9th International Conference on Electrical and Electronics Engineering (ELECO) . 1061-1066.
  • Cozma, A., & Pitica, D. (2008). Artificial neural network and PID based control system for DC motor drives, Proceedings of the 11th International Conference on Optimization of Electrical and Electronic Equipment. 161-166.
  • Muthusamy, M., & Muruganandam. M. (2012). SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR. ICTACT Journal on Soft Computing. 2. 319-324.
  • Liu, L., Liu, Y.J., & Chen, C.L.P. (2013).Adaptive Neural Network Control for a DC Motor System with Dead-Zone, Nonlinear Dyn 72, 141–147.
  • Ahmad, N. J., Ebraheem, H. K., Alnaser, M. J., & Alostath, J. M. (2011). Adaptive control of a DC motor with uncertain deadzone nonlinearity at the input, Chinese Control and Decision Conference (CCDC). 4295-4299.
  • Nizami, T. Khan., Chakravarty, A., & Mahanta, C. (2017). Design and implementation of a neuro-adaptive backstepping controller for buck converter fed PMDC-motor. Control Engineering Practice, 58. 78-87.
  • Nizami, T. K., Gangula, S. D., Reddy, R., & Dhiman H. S. (2022). Legendre Neural Network based Intelligent Control of DC-DC Step Down Converter-PMDC Motor Combination, IFAC PapersOnLine 55- . 162–167.
  • Gómez, C.A.P., Liceaga, J., & Alcalá, I.I.S. (2020). Hard Dead Zone and Friction Modeling and Identification of a Permanent Magnet DC Motor Non-Linear Model. WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL. 15. 527-536.
  • Zhang, S., Zhou, X., & Yang, L. (2011). Adaptive PID regulator based on neural network for DC motor speed control, 2011 International Conference on Electrical and Control Engineering. 1950-1953.
  • Kumar, N. S., Sadasivam, V., & Asan Sukriya, H. M. (2008) A Comparative Study of PI, Fuzzy, and ANN Controllers for Chopper-fed DC Drive with Embedded Systems Approach, Electric Power Components and Systems, 36:7, 680-695.
  • Yildiz, A.B., & Bilgin, M.Z. (2006). Speed Control of Averaged DC Motor Drive System by Using Neuro-PID Controller, Knowledge-Based Intelligent Information and Engineering Systems. 1075-1082.

Design and Simulation of a PID Neural Network Controller for PMDC Motor Speed and Position Control

Year 2022, Issue: 44, 46 - 50, 31.12.2022
https://doi.org/10.31590/ejosat.1222247

Abstract

Direct current (DC) motors have many difficulties when controlling angular velocity in a variety of applications. The perfect controller cannot be carried out by traditional control alone due to the nonlinear properties of DC motors, design constraints, and mechanical variations caused by the operation conditions. This study proposes a design for an artificial neural network based PID controller (ANNPID) to control the speed of a permanent magnet DC motor (PMDC) in two methods. A detailed analysis is performed based on the simulation results of both methods. The proposed controllers are numerically simulated for various test conditions including; set-point changes, step changes in the load torque, and parameter variations, then the suggested techniques were compared in a comparative study with a traditional PID controller based on the transient response specifications and the performance indices to validate the performance of the controllers. The simulation results demonstrated that the controllers have improved dynamics, static performance, and less overshoot. The methods described here achieve control more effectively than the conventional control approaches under both nominal and disturbed test conditions over different operating ranges.

References

  • Bansal, U.K., & Narvey, R. (2013). Speed Control of DC Motor Using Fuzzy PID Controller, Advance in Electronic and Electric Engineering 3(9).1209-1220.
  • Antonio E. B. Ruano (1992). Applications of Neural Networks to Control Systems, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. University of Wales, Bangor.
  • Vassilyev, S.N., Kelina, A.Yu., Kudinov, Y.I., & Pashchenko, Fedor F. (2017). Intelligent Control Systems. Procedia Computer Science. 103. 623-628.
  • Tuna, M., Fidan, C. B., Kocabey, S., & Görgülü, S. (2015). Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads, Journal of Electrical Engineering and Technology. 10(5), 2170-2178.
  • Gücin, T. N., Biberoğlu, M., Fincan, B., & Gülbahçe, M. O. (2015). Tuning cascade PI(D) controllers in PMDC motor drives: A performance comparison for different types of tuning methods, Proceedings of the 9th International Conference on Electrical and Electronics Engineering (ELECO) . 1061-1066.
  • Cozma, A., & Pitica, D. (2008). Artificial neural network and PID based control system for DC motor drives, Proceedings of the 11th International Conference on Optimization of Electrical and Electronic Equipment. 161-166.
  • Muthusamy, M., & Muruganandam. M. (2012). SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR. ICTACT Journal on Soft Computing. 2. 319-324.
  • Liu, L., Liu, Y.J., & Chen, C.L.P. (2013).Adaptive Neural Network Control for a DC Motor System with Dead-Zone, Nonlinear Dyn 72, 141–147.
  • Ahmad, N. J., Ebraheem, H. K., Alnaser, M. J., & Alostath, J. M. (2011). Adaptive control of a DC motor with uncertain deadzone nonlinearity at the input, Chinese Control and Decision Conference (CCDC). 4295-4299.
  • Nizami, T. Khan., Chakravarty, A., & Mahanta, C. (2017). Design and implementation of a neuro-adaptive backstepping controller for buck converter fed PMDC-motor. Control Engineering Practice, 58. 78-87.
  • Nizami, T. K., Gangula, S. D., Reddy, R., & Dhiman H. S. (2022). Legendre Neural Network based Intelligent Control of DC-DC Step Down Converter-PMDC Motor Combination, IFAC PapersOnLine 55- . 162–167.
  • Gómez, C.A.P., Liceaga, J., & Alcalá, I.I.S. (2020). Hard Dead Zone and Friction Modeling and Identification of a Permanent Magnet DC Motor Non-Linear Model. WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL. 15. 527-536.
  • Zhang, S., Zhou, X., & Yang, L. (2011). Adaptive PID regulator based on neural network for DC motor speed control, 2011 International Conference on Electrical and Control Engineering. 1950-1953.
  • Kumar, N. S., Sadasivam, V., & Asan Sukriya, H. M. (2008) A Comparative Study of PI, Fuzzy, and ANN Controllers for Chopper-fed DC Drive with Embedded Systems Approach, Electric Power Components and Systems, 36:7, 680-695.
  • Yildiz, A.B., & Bilgin, M.Z. (2006). Speed Control of Averaged DC Motor Drive System by Using Neuro-PID Controller, Knowledge-Based Intelligent Information and Engineering Systems. 1075-1082.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rahaf Sheıkh Debes 0000-0002-5707-4719

Tolgay Kara 0000-0003-3991-8524

Early Pub Date December 31, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Issue: 44

Cite

APA Sheıkh Debes, R., & Kara, T. (2022). Design and Simulation of a PID Neural Network Controller for PMDC Motor Speed and Position Control. Avrupa Bilim Ve Teknoloji Dergisi(44), 46-50. https://doi.org/10.31590/ejosat.1222247