İnce Toprak İçeriğin Zeminin Kayma Mukavemeti Parametrelerine Etkisi
Year 2023,
Issue: 50, 145 - 153, 30.04.2023
Ayse Pekrıoglu Balkıs
,
Gudisaa Gelana Negessu
,
Aya Ahmad
Abstract
Zeminin kayma mukavemeti, yapının göçmesine neden olan önemli bir faktördür. Zemin üzerine herhangi bir mühendislik yapısı inşa edilmeden önce, yapısal çökme felaketini en aza indirmek için kesme mukavemeti özelliklerinin derinlemesine araştırılması gerekir. Bu çalışma, farklı ince daneli toprak içerik yüzdelerinin zeminin kesme mukavemeti parametreleri üzerindeki etkisini açıklamaktadır. Çalışılan zemin örnekleri esas olarak kumlu ve killi topraktır. Bu araştırma, ince tanelerin kesme mukavemeti parametreleri (sürtünme açısı ve zeminin kohezyonu) üzerindeki etkisini araştırıyordu. Bu çalışmada, literatürde yer alan birçok makale gözden geçirilmiştir. Farklı makalelerden elde edilen sonuçlara dayanarak, zeminde bulunan ince zemin içeriğinin kesme mukavemeti parametrelerini nasıl etkilediğini açıklamak için akış şeması oluşturulmuştur. Kumlu zemin için, kesme mukavemeti parametreleri, karışımın sahip olduğu ince tanelerin yüzdesine ve ince mineralojik bileşimin tipine büyük ölçüde bağlıdır. Killi zeminde ince tane içeriği ve katkı maddesi arttıkça, zemin kesme mukavemeti parametrelerinin her ikisi de önemli ve görünür bir oranda artar.
References
- Al Rawi, O. S., Assaf, M. N., & Hussein, N. M. (2018). Effect of sand additives on the engineering properties of fine grained soils. ARPN Journal of Engineering and Applied Sciences, 13(9), 3197-3206.
- Al-Shayea, N. A. (2001). The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Engineering geology, 62(4), 319-342.
- Avci, E., & Mollamahmutoglu, M. (2016). UCS properties of superfine cement-grouted sand. Journal of Materials in Civil Engineering, 28(12), 06016015.
- Ayodele, AL (2015). A study of the effect of fines content on the performance of soil as sub-base material for road construction (Doctoral dissertation).
- Belkhatir, M., Schanz, T., & Arab, A. (2013). Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures. Environmental earth sciences , 70 (6), 2469-2479.
- Bellinaso, H., Demattê, J. A. M., & Romeiro, S. A. (2010). Soil spectral library and its use in soil classification. Revista Brasileira de Ciência do Solo, 34, 861-870.
- Chae, J., Kim, B., Park, S. W., & Kato, S. (2010). Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering, 14(3), 281-290.
- Changizi, F., & Haddad, A. (2017). Improving the geotechnical properties of soft clay with nano-silica particles. Proceedings of the Institution of Civil Engineers-Ground Improvement ,
- Das, B. & Sobhan, K. (2014) “Principles of Geotechnical Engineering” 8th ed. USA. Cengage Learning.
- Georgiannou, V. N., Burland, J. B., & Hight, D. W. (1990). The undrained behaviour of clayey sands in triaxial compression and extension. Geotechnique, 40(3), 431-449.
- Islam, T., Islam, M. A., Islam, M. S., & Abedin, M. Z. (2017, February). Effect of fine content on shear strength behavior of sandy soil. In Proceedings of 14th Global Engineering and Technology Conference. BIAM Foundation (Vol. 63).
- Kim, B., Prezzi, M., & Salgado, R. (2005). Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. Journal of geotechnical and geoenvironmental engineering, 131(7), 914-924.
- Liu, J., Lv, P., Cui, Y., & Liu, J. (2014). Experimental study on direct shear behavior of frozen soil–concrete interface. Cold regions science and technology , 104 , 1-6.
- Lü, X., Huang, M., & Andrade, J. E. (2018). Modeling the static liquefaction of unsaturated sand containing gas bubbles. Soils and foundations, 58(1), 122-133.
- Maleki, M., Ezzatkhah, A., Bayat, M., & Mousivand, M. (2011). Effect of physical parameters on static undrained resistance of sandy soil with low silt content. Soil Dynamics and Earthquake Engineering, 31(10), 1324-1331.
- Norsyahariati, N. D. N., & Hui, K. R. (2016). The effect of soil particle arrangement on shear strength behavior of silty sand. In MATEC Web of Conferences (Vol. 47, p. 03022). EDP Sciences.
- Phan, V. T. A., Hsiao, D. H., & Nguyen, P. T. L. (2016). Effects of fines contents on engineering properties of sand-fines mixtures. Procedia engineering, 142, 213-220.
- Rankine, K. J., Sivakugan, N., & Cowling, R. (2006). Emplaced geotechnical characteristics of hydraulic fills in a number of Australian mines. Geotechnical & Geological Engineering, 24(1), 1-14.
- Rogers, C. D. F., & Glendinning, S. (1997). Improvement of clay soils in situ using lime piles in the UK. Engineering geology, 47(3), 243-257.
- Sharifi, E., Danilenko, A., Weidig, U., & Steinhoff, K. (2019). Influence of plastic deformation gradients at room temperature on precipitation kinetics and mechanical properties of high-strength aluminum alloys. J.Eng. pic. Appl , 9 (1), 24-29.
- Thian, S. Y., & Lee, C. Y. (2011). Undrained response of mining sand with fines contents. International Journal of Civil and Structural Engineering, 1(4), 844.
- Tiwari, B., Tuladhar, GR, & Marui, H. (2005). Variation in residual shear strength of the soil with the salinity of pore fluid. Journal of Geotechnical and Geoenvironmental Engineering , 131 (12), 1445-1456.
- Wang, S., Chan, D., & Lam, KC (2009). Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong. Construction and Building Materials , 23 (3), 1249-1264.
- Wu, TH (1996). Soil strength properties and their measurement. Landslides, Investigation and Mitigation, Transportation Research Board, National Research Council, Special Report , 247 , 319-336.
- Wu, Y., Li, Y., & Niu, B. (2014). Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests. The Scientific World Journal, 2014.
Effect of Fine Content on Shear Strength Parameters of Soil
Year 2023,
Issue: 50, 145 - 153, 30.04.2023
Ayse Pekrıoglu Balkıs
,
Gudisaa Gelana Negessu
,
Aya Ahmad
Abstract
The shear strength of the soil is a crucial factor in the structure's failure. Before any engineering structure is built on the soil, the shear strength characteristics must be thoroughly examined in order to reduce the calamity of structural collapse. The current study investigates the influence of varied percentages of fine material on soil shear strength. The soil sample consists primarily of sandy and clay soil. The study looked into the impact of fines on shear strength metrics (friction angle and soil cohesion). Several journal papers and articles were reviewed for this study. Based on the findings of several papers, the flow chart was created to describe the effect of the percentage of fine content in the soil and how it affects shear strength parameters. The shear strength parameters of sandy soil are significantly dependent on the percentage of fines in the mixture and the type of fine mineralogical composition. Both soil shear strength parameters increase at a substantial and apparent pace as compared to the particle content and additive increases in clay soil.
References
- Al Rawi, O. S., Assaf, M. N., & Hussein, N. M. (2018). Effect of sand additives on the engineering properties of fine grained soils. ARPN Journal of Engineering and Applied Sciences, 13(9), 3197-3206.
- Al-Shayea, N. A. (2001). The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Engineering geology, 62(4), 319-342.
- Avci, E., & Mollamahmutoglu, M. (2016). UCS properties of superfine cement-grouted sand. Journal of Materials in Civil Engineering, 28(12), 06016015.
- Ayodele, AL (2015). A study of the effect of fines content on the performance of soil as sub-base material for road construction (Doctoral dissertation).
- Belkhatir, M., Schanz, T., & Arab, A. (2013). Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures. Environmental earth sciences , 70 (6), 2469-2479.
- Bellinaso, H., Demattê, J. A. M., & Romeiro, S. A. (2010). Soil spectral library and its use in soil classification. Revista Brasileira de Ciência do Solo, 34, 861-870.
- Chae, J., Kim, B., Park, S. W., & Kato, S. (2010). Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering, 14(3), 281-290.
- Changizi, F., & Haddad, A. (2017). Improving the geotechnical properties of soft clay with nano-silica particles. Proceedings of the Institution of Civil Engineers-Ground Improvement ,
- Das, B. & Sobhan, K. (2014) “Principles of Geotechnical Engineering” 8th ed. USA. Cengage Learning.
- Georgiannou, V. N., Burland, J. B., & Hight, D. W. (1990). The undrained behaviour of clayey sands in triaxial compression and extension. Geotechnique, 40(3), 431-449.
- Islam, T., Islam, M. A., Islam, M. S., & Abedin, M. Z. (2017, February). Effect of fine content on shear strength behavior of sandy soil. In Proceedings of 14th Global Engineering and Technology Conference. BIAM Foundation (Vol. 63).
- Kim, B., Prezzi, M., & Salgado, R. (2005). Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. Journal of geotechnical and geoenvironmental engineering, 131(7), 914-924.
- Liu, J., Lv, P., Cui, Y., & Liu, J. (2014). Experimental study on direct shear behavior of frozen soil–concrete interface. Cold regions science and technology , 104 , 1-6.
- Lü, X., Huang, M., & Andrade, J. E. (2018). Modeling the static liquefaction of unsaturated sand containing gas bubbles. Soils and foundations, 58(1), 122-133.
- Maleki, M., Ezzatkhah, A., Bayat, M., & Mousivand, M. (2011). Effect of physical parameters on static undrained resistance of sandy soil with low silt content. Soil Dynamics and Earthquake Engineering, 31(10), 1324-1331.
- Norsyahariati, N. D. N., & Hui, K. R. (2016). The effect of soil particle arrangement on shear strength behavior of silty sand. In MATEC Web of Conferences (Vol. 47, p. 03022). EDP Sciences.
- Phan, V. T. A., Hsiao, D. H., & Nguyen, P. T. L. (2016). Effects of fines contents on engineering properties of sand-fines mixtures. Procedia engineering, 142, 213-220.
- Rankine, K. J., Sivakugan, N., & Cowling, R. (2006). Emplaced geotechnical characteristics of hydraulic fills in a number of Australian mines. Geotechnical & Geological Engineering, 24(1), 1-14.
- Rogers, C. D. F., & Glendinning, S. (1997). Improvement of clay soils in situ using lime piles in the UK. Engineering geology, 47(3), 243-257.
- Sharifi, E., Danilenko, A., Weidig, U., & Steinhoff, K. (2019). Influence of plastic deformation gradients at room temperature on precipitation kinetics and mechanical properties of high-strength aluminum alloys. J.Eng. pic. Appl , 9 (1), 24-29.
- Thian, S. Y., & Lee, C. Y. (2011). Undrained response of mining sand with fines contents. International Journal of Civil and Structural Engineering, 1(4), 844.
- Tiwari, B., Tuladhar, GR, & Marui, H. (2005). Variation in residual shear strength of the soil with the salinity of pore fluid. Journal of Geotechnical and Geoenvironmental Engineering , 131 (12), 1445-1456.
- Wang, S., Chan, D., & Lam, KC (2009). Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong. Construction and Building Materials , 23 (3), 1249-1264.
- Wu, TH (1996). Soil strength properties and their measurement. Landslides, Investigation and Mitigation, Transportation Research Board, National Research Council, Special Report , 247 , 319-336.
- Wu, Y., Li, Y., & Niu, B. (2014). Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests. The Scientific World Journal, 2014.