Research Article
BibTex RIS Cite

Dopamine Detection From PC12 Cells With A Carbon-fiber Microelectrode Controlled By A Hommade System

Year 2023, Issue: 52, 104 - 109, 15.12.2023

Abstract

Dopamine (DA) is a neurotransmitter that is naturally produced in the body. Dopamine provides nerve conduction in the central nervous system and plays an important role in the regulation and control of movements, motivation and cognitive development.. Imbalance in the amount of DA can cause many diseases ranging from Parkinson's disease to depression. In this study, PC12 cells were chemically stimulated with potassium ions and local electrochemical measurement of DA released by the cells was performed.First, the production of needle-tipped CFMDE was carried out by micropulling method. Carbon-fiber microdisk electrodes are frequently used for effective and high sensitivity detection of dopamine. Afterwards, cell clusters of PC12 cells were obtained and the change in dopamine amount in PC12 cell clusters was measurement. For the measurement process, a microcontroller unit integrated to a inverted microscope was used to precisely position the needle-tipped electrodes. DA release was successfully measured as a result of chemical stimulation with K+ ions. Basically, a homemade system was developed to analyze DA release triggered by chemical or physical stimuli.

Supporting Institution

TUBITAK

Project Number

1919B012218283

Thanks

We thank Dr. Özkur KURAN for his help in the installation of the microcontroller unit.

References

  • Alipour, E., Majidi, M. R., Saadatirad, A., mahdi Golabi, S., & Alizadeh, A. M. (2013). Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochimica Acta, 91, 36–42.
  • Aydin, V. K., & Şen, M. (2017). A facile method for fabricating carbon fiber-based gold ultramicroelectrodes with different shapes using flame etching and electrochemical deposition. Journal of Electroanalytical Chemistry, 799, 525–530.
  • Aykaç, A., Tunç, I. D., Güneş, F., Erol, M., & Şen, M. (2021). Sensitive pH measurement using EGFET pH-microsensor based on ZnO nanowire functionalized carbon-fibers. Nanotechnology, 32(36), 365501.
  • Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European journal of neurology, 27(1), 27–42.
  • Begieneman, M. P. V, Ter Horst, E. N., Rijvers, L., Meinster, E., Leen, R., Pankras, J. E., Fritz, J., Kubat, B., Musters, R. J. P., & van Kuilenburg, A. B. P. (2016). Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells. American Journal of Physiology-Heart and Circulatory Physiology, 311(5), H1097--H1107.
  • Cummings, J. L. (1991). Behavioral complications of drug treatment of Parkinson’s disease. Journal of the American Geriatrics Society, 39(7), 708–716.
  • Ding, A., Wang, B., Zheng, J., Weng, B., & Li, C. (2018). Sensitive dopamine sensor based on three dimensional and macroporous carbon aerogel microelectrode. Int. J. Electrochem. Sci, 13, 4379–4389.
  • Feng, P., Chen, Y., Zhang, L., Qian, C.-G., Xiao, X., Han, X., & Shen, Q.-D. (2018). Near-infrared fluorescent Nanoprobes for revealing the role of dopamine in drug addiction. ACS applied materials & interfaces, 10(5), 4359–4368.
  • Giordano, G., & Costa, L. G. (2011). Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. In Vitro Neurotoxicology: Methods and Protocols, 13–27.
  • Güzel, Ö. Ü. D., Tanyeli, Ö. Ü. A., Kalfa, Z., & Yalım, H. N. (2019). Dopamin ve Fizyolojik Özellikleri. Içinde Academic Researches in Health Sciences.
  • Jiang, G., Jiang, T., Zhou, H., Yao, J., & Kong, X. (2015). Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Advances, 5(12), 9064–9068.
  • Latif, S., Jahangeer, M., Razia, D. M., Ashiq, M., Ghaffar, A., Akram, M., El Allam, A., Bouyahya, A., Garipova, L., & Shariati, M. A. (2021). Dopamine in Parkinson’s disease. Clinica chimica acta, 522, 114–126.
  • Miller, D. D., Harroid, M., Wallace, R. A., Wallace, L. J., & Uretsky, N. J. (1988). Dopaminergic drugs in the cationic form interact with D2 dopamine receptors. Trends in Pharmacological Sciences, 9(8), 282–284.
  • Olanow, C. W., Obeso, J. A., & Stocchi, F. (2006). Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. The Lancet Neurology, 5(8), 677–687.
  • Pan, X., Kaminga, A. C., Wen, S. W., Wu, X., Acheampong, K., & Liu, A. (2019). Dopamine and dopamine receptors in Alzheimer’s disease: A systematic review and network meta-analysis. Frontiers in aging neuroscience, 11, 175.
  • Pozzan, T., Gatti, G., Dozio, N., Vicentini, L. M., & Meldolesi, J. (1984). Ca2+-dependent and-independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation? The Journal of cell biology, 99(2), 628–638.
  • Qin, X., Li, Z.-Q., Zhou, Y., Pan, J.-B., Li, J., Wang, K., Xu, J.-J., & Xia, X.-H. (2020). Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging. Analytical Chemistry, 92(19), 13493–13499.
  • Şen, M. (2019). Using electropolymerization-based doping for the electroaddressable functionalization of a multi-electrode array probe for nucleic acid detection. Analytical Sciences, 35(5), 565–569.
  • Şen, M., & Avcı, İ. (2023). A simple microfluidic redox cycling-based device for high-sensitive detection of dopamine released from PC12 cells. Journal of Electroanalytical Chemistry, 939, 117473.
  • Şen, M., Azizi, E., Avcı, İ., Aykaç, A., Ensarioğlu, K., Ok, İ., Yavuz, G. F., & Güneş, F. (2022). Screen printed carbon electrodes modified with 3D nanostructured materials for bioanalysis. Electroanalysis, 34(9), 1463–1471.
  • Seven, F., Gölcez, T., & Şen, M. (2020). Nanoporous carbon-fiber microelectrodes for sensitive detection of H2O2 and dopamine. Journal of Electroanalytical Chemistry, 864, 114104.
  • Seven, F., Gölcez, T., Yaralı, Z. B., Onak, G., Karaman, O., & Şen, M. (2020). Guiding neural extensions of PC12 cells on carbon nanotube tracks dielectrophoretically formed in poly (ethylene glycol) dimethacrylate. RSC advances, 10(44), 26120–26125.
  • Shinohara, H., Sakai, Y., & Mir, T. A. (2013). Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Analytical biochemistry, 441(2), 185–189.
  • Swamy, B. E. K., & Venton, B. J. (2007). Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst, 132(9), 876–884.
  • Tian, Z., Qin, X., Shao, F., Li, X., Wang, Z., Liu, S., & Wu, Y. (2023). Electrofluorochromic imaging analysis of dopamine release from living PC12 cells with bipolar nanoelectrodes array. Chinese Chemical Letters, 34(1), 107656.
  • Whitton, A. E., Reinen, J. M., Slifstein, M., Ang, Y.-S., McGrath, P. J., Iosifescu, D. V, Abi-Dargham, A., Pizzagalli, D. A., & Schneier, F. R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain, 143(2), 701–710.
  • Yang, L., Wang, J., Lü, H., & Hui, N. (2021). Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Microchimica Acta, 188(1), 25.
  • Zhou, L., Hou, H., Wei, H., Yao, L., Sun, L., Yu, P., Su, B., & Mao, L. (2019). In vivo monitoring of oxygen in rat brain by carbon fiber microelectrode modified with antifouling nanoporous membrane. Analytical chemistry, 91(5), 3645–3651.

Ev Yapımı Bir Sistem Tarafından Kontrol Edilen Karbon Fiber Mikroelektrot ile PC12 Hücrelerinden Dopamin Tespiti

Year 2023, Issue: 52, 104 - 109, 15.12.2023

Abstract

Dopamin (DA), vücutta doğal olarak üretilen bir nörotransmiterdir. Dopamin, merkezi sinir sisteminde sinir iletimini sağlar ve hareketlerin düzenlenmesi ve kontrolünde, motivasyonda ve bilişsel gelişimde önemli rol oynar. DA miktarındaki dengesizlik, Parkinson hastalığından depresyona kadar birçok hastalığa neden olabilir. Bu çalışmada PC12 hücreleri potasyum iyonları ile kimyasal olarak uyarıldı ve hücreler tarafından salınan DA'nın lokal elektrokimyasal ölçümü gerçekleştirildi. İlk olarak mikro çekme yöntemi ile iğne uçlu karbon fiber mikroelektrotların üretimi gerçekleştirildi. Karbon fiber elektrotlar, dopaminin etkili ve yüksek hassasiyetli tespiti için sıklıkla kullanılır. Sonrasında PC12 hücrelerinin hücre kümeleri elde edildi ve Pc12 hücre kümelerindeki dopamin miktarındaki değişim ölçüldü. Ölçüm işlemi için, iğne uçlu elektrotları hassas bir şekilde konumlandırmak için ters bir mikroskoba entegre edilmiş bir mikro denetleyici ünitesi kullanıldı. DA salınımı, K+ iyonları ile kimyasal stimülasyonun bir sonucu olarak başarıyla ölçüldü. Temel olarak, kimyasal veya fiziksel uyaranlarla tetiklenen DA salınımını analiz etmek için ev yapımı bir sistem geliştirildi.

Project Number

1919B012218283

References

  • Alipour, E., Majidi, M. R., Saadatirad, A., mahdi Golabi, S., & Alizadeh, A. M. (2013). Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochimica Acta, 91, 36–42.
  • Aydin, V. K., & Şen, M. (2017). A facile method for fabricating carbon fiber-based gold ultramicroelectrodes with different shapes using flame etching and electrochemical deposition. Journal of Electroanalytical Chemistry, 799, 525–530.
  • Aykaç, A., Tunç, I. D., Güneş, F., Erol, M., & Şen, M. (2021). Sensitive pH measurement using EGFET pH-microsensor based on ZnO nanowire functionalized carbon-fibers. Nanotechnology, 32(36), 365501.
  • Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European journal of neurology, 27(1), 27–42.
  • Begieneman, M. P. V, Ter Horst, E. N., Rijvers, L., Meinster, E., Leen, R., Pankras, J. E., Fritz, J., Kubat, B., Musters, R. J. P., & van Kuilenburg, A. B. P. (2016). Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells. American Journal of Physiology-Heart and Circulatory Physiology, 311(5), H1097--H1107.
  • Cummings, J. L. (1991). Behavioral complications of drug treatment of Parkinson’s disease. Journal of the American Geriatrics Society, 39(7), 708–716.
  • Ding, A., Wang, B., Zheng, J., Weng, B., & Li, C. (2018). Sensitive dopamine sensor based on three dimensional and macroporous carbon aerogel microelectrode. Int. J. Electrochem. Sci, 13, 4379–4389.
  • Feng, P., Chen, Y., Zhang, L., Qian, C.-G., Xiao, X., Han, X., & Shen, Q.-D. (2018). Near-infrared fluorescent Nanoprobes for revealing the role of dopamine in drug addiction. ACS applied materials & interfaces, 10(5), 4359–4368.
  • Giordano, G., & Costa, L. G. (2011). Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. In Vitro Neurotoxicology: Methods and Protocols, 13–27.
  • Güzel, Ö. Ü. D., Tanyeli, Ö. Ü. A., Kalfa, Z., & Yalım, H. N. (2019). Dopamin ve Fizyolojik Özellikleri. Içinde Academic Researches in Health Sciences.
  • Jiang, G., Jiang, T., Zhou, H., Yao, J., & Kong, X. (2015). Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Advances, 5(12), 9064–9068.
  • Latif, S., Jahangeer, M., Razia, D. M., Ashiq, M., Ghaffar, A., Akram, M., El Allam, A., Bouyahya, A., Garipova, L., & Shariati, M. A. (2021). Dopamine in Parkinson’s disease. Clinica chimica acta, 522, 114–126.
  • Miller, D. D., Harroid, M., Wallace, R. A., Wallace, L. J., & Uretsky, N. J. (1988). Dopaminergic drugs in the cationic form interact with D2 dopamine receptors. Trends in Pharmacological Sciences, 9(8), 282–284.
  • Olanow, C. W., Obeso, J. A., & Stocchi, F. (2006). Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. The Lancet Neurology, 5(8), 677–687.
  • Pan, X., Kaminga, A. C., Wen, S. W., Wu, X., Acheampong, K., & Liu, A. (2019). Dopamine and dopamine receptors in Alzheimer’s disease: A systematic review and network meta-analysis. Frontiers in aging neuroscience, 11, 175.
  • Pozzan, T., Gatti, G., Dozio, N., Vicentini, L. M., & Meldolesi, J. (1984). Ca2+-dependent and-independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation? The Journal of cell biology, 99(2), 628–638.
  • Qin, X., Li, Z.-Q., Zhou, Y., Pan, J.-B., Li, J., Wang, K., Xu, J.-J., & Xia, X.-H. (2020). Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging. Analytical Chemistry, 92(19), 13493–13499.
  • Şen, M. (2019). Using electropolymerization-based doping for the electroaddressable functionalization of a multi-electrode array probe for nucleic acid detection. Analytical Sciences, 35(5), 565–569.
  • Şen, M., & Avcı, İ. (2023). A simple microfluidic redox cycling-based device for high-sensitive detection of dopamine released from PC12 cells. Journal of Electroanalytical Chemistry, 939, 117473.
  • Şen, M., Azizi, E., Avcı, İ., Aykaç, A., Ensarioğlu, K., Ok, İ., Yavuz, G. F., & Güneş, F. (2022). Screen printed carbon electrodes modified with 3D nanostructured materials for bioanalysis. Electroanalysis, 34(9), 1463–1471.
  • Seven, F., Gölcez, T., & Şen, M. (2020). Nanoporous carbon-fiber microelectrodes for sensitive detection of H2O2 and dopamine. Journal of Electroanalytical Chemistry, 864, 114104.
  • Seven, F., Gölcez, T., Yaralı, Z. B., Onak, G., Karaman, O., & Şen, M. (2020). Guiding neural extensions of PC12 cells on carbon nanotube tracks dielectrophoretically formed in poly (ethylene glycol) dimethacrylate. RSC advances, 10(44), 26120–26125.
  • Shinohara, H., Sakai, Y., & Mir, T. A. (2013). Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Analytical biochemistry, 441(2), 185–189.
  • Swamy, B. E. K., & Venton, B. J. (2007). Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst, 132(9), 876–884.
  • Tian, Z., Qin, X., Shao, F., Li, X., Wang, Z., Liu, S., & Wu, Y. (2023). Electrofluorochromic imaging analysis of dopamine release from living PC12 cells with bipolar nanoelectrodes array. Chinese Chemical Letters, 34(1), 107656.
  • Whitton, A. E., Reinen, J. M., Slifstein, M., Ang, Y.-S., McGrath, P. J., Iosifescu, D. V, Abi-Dargham, A., Pizzagalli, D. A., & Schneier, F. R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain, 143(2), 701–710.
  • Yang, L., Wang, J., Lü, H., & Hui, N. (2021). Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Microchimica Acta, 188(1), 25.
  • Zhou, L., Hou, H., Wei, H., Yao, L., Sun, L., Yu, P., Su, B., & Mao, L. (2019). In vivo monitoring of oxygen in rat brain by carbon fiber microelectrode modified with antifouling nanoporous membrane. Analytical chemistry, 91(5), 3645–3651.
There are 28 citations in total.

Details

Primary Language English
Subjects Analytical Biochemistry, Biomedical Diagnosis
Journal Section Articles
Authors

Tuğba Akkaş 0009-0004-1728-8490

Mustafa Şen 0000-0002-2421-9184

Project Number 1919B012218283
Early Pub Date December 5, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Issue: 52

Cite

APA Akkaş, T., & Şen, M. (2023). Dopamine Detection From PC12 Cells With A Carbon-fiber Microelectrode Controlled By A Hommade System. Avrupa Bilim Ve Teknoloji Dergisi(52), 104-109.