Research Article
BibTex RIS Cite

Silis Dumanı Katkılı Çelik Lifli Betonun Eğilme, Basınç Dayanımı ve Mikro Yapısının İncelenmesi.

Year 2023, Issue: 52, 183 - 192, 15.12.2023

Abstract

Beton günümüzde en yaygın kullanılan yapı malzemesi olup, beton üretiminde bağlayıcı madde olarak çimento kullanılmaktadır. Çelik lifli betonlarda silis dumanının kullanılması yüksek dayanımlı ve kaliteli beton üretimi için uygundur. Bu çalışmada çelik lifli betonlarda silis dumanı kullanılarak %0, %5, %10 ve %15 oranlarında çimento ile ikame edilerek testler yapılmıştır. Testler sırasında üretilen betonda CEM I 42,5 N çimento ve çelik elyaf kullanıldı. Numuneler su/çimento oranı 0,50 olan C 25 sınıfından seçilmiş ve vibrasyona tabi tutularak üretilmiştir. Test numuneleri 100 mm x 100 mm x 500 mm ölçülerinde üretilen prizma numuneler üzerinde orta noktalarından eğilme testine, kenarlarından ise basma testine tabi tutuldu. Üretilen betonların 7 günlük ve 28 günlük eğilme ve basınç dayanım testleri ölçüldü. Ayrıca betondaki hidratasyon ürünleri taramalı elektron mikroskobu, enerji dağılımlı spektrometri ve x-ışını kırınımı ile gözlemlendi. Sonuç olarak silis dumanı miktarı arttıkça eğilme ve basınç dayanımında artış olduğu belirlendi.

Ethical Statement

etik kurulu kararı gerekmiyor

References

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmed Ezeldin, & P. Balaguru. (1989). Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete. Materials Journal, 86(5), 515–524.
  • AL-MASHHADANI, M. M. M. (2021). Strength behavior of geopolymer based SIFCON with different fibers. Avrupa Bilim ve Teknoloji Dergisi, (28), 1342-1347.
  • Atiş, C. D., & Karahan, O. (2009). Properties of steel fiber reinforced fly ash concrete. Construction and Building Materials, 23(1), 392–399. https://doi.org/10.1016/j.conbuildmat.2007.11.002
  • Babu, K. G., & Babu, D. S. (2003). Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cement and Concrete Research, 33(5), 755–762. https://doi.org/10.1016/S0008-8846(02)01055-4
  • Bagherzadeh, R., Sadeghi, A. H., & Latifi, M. (2012). Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Textile Research Journal, 82(1), 88–96. https://doi.org/10.1177/0040517511420767
  • Balendran, R. V., Zhou, F. P., Nadeem, A., & Leung, A. Y. T. (2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Building and Environment, 37(12), 1361–1367. https://doi.org/10.1016/S0360-1323(01)00109-3
  • Behnood, A., & Ziari, H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement and Concrete Composites, 30(2), 106–112. https://doi.org/10.1016/j.cemconcomp.2007.06.003
  • BENTUR, A., & M. D. COHEN. (1987). Effect of Condensed Silica Fume on the Microstructure of the Interfacial Zone in Portland Cement Mortars. Journal of the American Ceramic Society, 70(10), 738–743. https://doi.org/10.1111/j.1151-2916.1987.tb04873.x
  • Choo, B. S., & Newman, J. B. (2003). Advanced concrete technology 2: concrete properties. Doğruyol, M. (2017). Diyarbakır Bazaltının Mineral Katkıları İle Kullanılmasının Betonun Dayanım ve Dayanıklılığına Etkisi. Dicle Üniversitesi, Diyarbakır.
  • Duval, R., & Kadri, E. H. (1998). Influence of Silica Fume on the Workability and the. Cement and Concrete Research, 28(4), 533–547.
  • Ferrara, L., & Meda, A. (2006). Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Materials and Structures/Materiaux et Constructions, 39(4), 411–420. https://doi.org/10.1617/s11527-005-9017-4
  • Gao, J., Sun, W., & Morino, K. (1997). Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cement and Concrete Composites, 19(4), 307–313. https://doi.org/10.1016/S0958-9465(97)00023-1
  • Hadi, M. N. S. (2009). Reinforcing concrete columns with steel fibres. Asian Journal of Civil Engineering, 10(1), 79–95.
  • Ivorra, S., Garcés, P., Catalá, G., Andión, L. G., & Zornoza, E. (2010). Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Materials and Design, 31(3), 1553–1558. https://doi.org/10.1016/j.matdes.2009.09.050
  • Kamal Henri Khayat, & Pierre-Claude. (1992). SilicaFume in Concrete--An Overview. Special Publication, 132, 835–872.
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials and Design, 32(2), 1044–1049. https://doi.org/10.1016/j.matdes.2010.07.011
  • Kilinçkale, F. M. (1996). Çeşitli Puzolanların Puzolanik Aktivitesi ve Bu Puzzolanlarla Üretilen Harçların Dayanımı. Teknik Dergi, 7(33).
  • Nili, M., & Afroughsabet, V. (2010a). Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering, 37(8), 879–886. https://doi.org/10.1016/j.ijimpeng.2010.03.004
  • Nili, M., & Afroughsabet, V. (2010b). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927–933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
  • Özcan, U., & Güngör, S. (2019). Sürdürülebilir Bir Yöntem/Betonda Puzolan Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, (15), 176-182.
  • Panjehpour, M., Abdullah, A., Ali, A., & Demirboga, R. (2011). a Review for Characterization of Silica Fume and. International Journal of Sustainable Construction Engineering & Technology, 2(2), 1–7.
  • Pinto, R. C., & Hover, K. C. (1997). Effect of Silica Fume and Superplasticizer Addition on Setting Behavior of High-Strength Mixtures. Transportation Research Record, 1574(1), 56–62.
  • Regmi, G., Indraratna, B., Nghiem, L. D., & Banasiak, L. (2011). Evaluating waste concrete for the treatment of acid sulphate soil groundwater from coastal floodplains. Desalination and Water Treatment, 32(1–3), 126–132.
  • Scrivener, K. L., Bentur, A., & Pratt, P. L. (1988). Quantitative characterization of the transition zone in high strength concretes. Advances in Cement Research, 1(4), 230–237. https://doi.org/10.1680/adcr.1988.1.4.230
  • Şener, S., Begimgil, M., & Belgin, Ç. G. ˇ. A. (2002). Size Effect on Failure of Concrete Beams with and Without Steel Fibers. Journal of Materials in Civil Engineering, 14(5), 436–440. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:5(436)
  • Serin, G. (1999). Pomzanın hafif beton blok duvar elemanı olarak kullanılmasının araştırılması.
  • Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened properties. Resources, Conservation and Recycling, 55(11), 923–932. https://doi.org/10.1016/j.resconrec.2011.06.012
  • Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  • TS 10514. (n.d.). Concrete - Steel Fibre Reinforced - Rules for Mixing Concrete and Control.
  • Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8–14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
  • Yan, H., Sun, W., & Chen, H. (1999). Effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 29(3), 423–426. https://doi.org/10.1016/S0008-8846(98)00235-X
  • Yazıcıoğlu, S., & Bozkurt, N. (2006). Pomza ve mineral katkılı taşıyıcı hafif betonun mekanik özelliklerinin araştırılması. Gazi Üniv. Müh. Mim. Fak. Der., 21(4), 675–680.
  • Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 64, 84–92. https://doi.org/10.1016/j.cemconcomp.2015.10.001

Investigation of Flexural, Compressive Strength and Microstructure of Silica Fume Added Steel Fiber Concrete

Year 2023, Issue: 52, 183 - 192, 15.12.2023

Abstract

Concrete is the most extensively used construction material today, and cement is used as the bonding agent in the concrete production. Use of silica fume in steel fiber concretes is suitable for high-strength and high-quality concrete production. In this study, tests were conducted using silica fume in steel fiber concretes by 0 %, 5 %, 10 % and 15 % via replacement with cement. CEM I 42.5 N cement and steel fiber were used in the concrete produced during the tests. Samples were selected from C 25 class in which water/cement ratio was 0.50 and produced by being subjected to vibration. Test samples were subjected to a flexural test from their midpoints and a compression test from the edges on prism samples produced at sizes of 100 mm x l00 mm x 500 mm. 7 day and 28 day flexural and compression strength tests of the concretes produced were measured. Besides, hydration products in concrete were observed with scanning electron microscope, energy dispersive spectrometry, and x-ray diffraction. As a result, it was determined that as the amount of silica fume increased, there was an increase in flexural and compressive strength.

References

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmed Ezeldin, & P. Balaguru. (1989). Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete. Materials Journal, 86(5), 515–524.
  • AL-MASHHADANI, M. M. M. (2021). Strength behavior of geopolymer based SIFCON with different fibers. Avrupa Bilim ve Teknoloji Dergisi, (28), 1342-1347.
  • Atiş, C. D., & Karahan, O. (2009). Properties of steel fiber reinforced fly ash concrete. Construction and Building Materials, 23(1), 392–399. https://doi.org/10.1016/j.conbuildmat.2007.11.002
  • Babu, K. G., & Babu, D. S. (2003). Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cement and Concrete Research, 33(5), 755–762. https://doi.org/10.1016/S0008-8846(02)01055-4
  • Bagherzadeh, R., Sadeghi, A. H., & Latifi, M. (2012). Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Textile Research Journal, 82(1), 88–96. https://doi.org/10.1177/0040517511420767
  • Balendran, R. V., Zhou, F. P., Nadeem, A., & Leung, A. Y. T. (2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Building and Environment, 37(12), 1361–1367. https://doi.org/10.1016/S0360-1323(01)00109-3
  • Behnood, A., & Ziari, H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement and Concrete Composites, 30(2), 106–112. https://doi.org/10.1016/j.cemconcomp.2007.06.003
  • BENTUR, A., & M. D. COHEN. (1987). Effect of Condensed Silica Fume on the Microstructure of the Interfacial Zone in Portland Cement Mortars. Journal of the American Ceramic Society, 70(10), 738–743. https://doi.org/10.1111/j.1151-2916.1987.tb04873.x
  • Choo, B. S., & Newman, J. B. (2003). Advanced concrete technology 2: concrete properties. Doğruyol, M. (2017). Diyarbakır Bazaltının Mineral Katkıları İle Kullanılmasının Betonun Dayanım ve Dayanıklılığına Etkisi. Dicle Üniversitesi, Diyarbakır.
  • Duval, R., & Kadri, E. H. (1998). Influence of Silica Fume on the Workability and the. Cement and Concrete Research, 28(4), 533–547.
  • Ferrara, L., & Meda, A. (2006). Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Materials and Structures/Materiaux et Constructions, 39(4), 411–420. https://doi.org/10.1617/s11527-005-9017-4
  • Gao, J., Sun, W., & Morino, K. (1997). Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cement and Concrete Composites, 19(4), 307–313. https://doi.org/10.1016/S0958-9465(97)00023-1
  • Hadi, M. N. S. (2009). Reinforcing concrete columns with steel fibres. Asian Journal of Civil Engineering, 10(1), 79–95.
  • Ivorra, S., Garcés, P., Catalá, G., Andión, L. G., & Zornoza, E. (2010). Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Materials and Design, 31(3), 1553–1558. https://doi.org/10.1016/j.matdes.2009.09.050
  • Kamal Henri Khayat, & Pierre-Claude. (1992). SilicaFume in Concrete--An Overview. Special Publication, 132, 835–872.
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials and Design, 32(2), 1044–1049. https://doi.org/10.1016/j.matdes.2010.07.011
  • Kilinçkale, F. M. (1996). Çeşitli Puzolanların Puzolanik Aktivitesi ve Bu Puzzolanlarla Üretilen Harçların Dayanımı. Teknik Dergi, 7(33).
  • Nili, M., & Afroughsabet, V. (2010a). Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering, 37(8), 879–886. https://doi.org/10.1016/j.ijimpeng.2010.03.004
  • Nili, M., & Afroughsabet, V. (2010b). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927–933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
  • Özcan, U., & Güngör, S. (2019). Sürdürülebilir Bir Yöntem/Betonda Puzolan Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, (15), 176-182.
  • Panjehpour, M., Abdullah, A., Ali, A., & Demirboga, R. (2011). a Review for Characterization of Silica Fume and. International Journal of Sustainable Construction Engineering & Technology, 2(2), 1–7.
  • Pinto, R. C., & Hover, K. C. (1997). Effect of Silica Fume and Superplasticizer Addition on Setting Behavior of High-Strength Mixtures. Transportation Research Record, 1574(1), 56–62.
  • Regmi, G., Indraratna, B., Nghiem, L. D., & Banasiak, L. (2011). Evaluating waste concrete for the treatment of acid sulphate soil groundwater from coastal floodplains. Desalination and Water Treatment, 32(1–3), 126–132.
  • Scrivener, K. L., Bentur, A., & Pratt, P. L. (1988). Quantitative characterization of the transition zone in high strength concretes. Advances in Cement Research, 1(4), 230–237. https://doi.org/10.1680/adcr.1988.1.4.230
  • Şener, S., Begimgil, M., & Belgin, Ç. G. ˇ. A. (2002). Size Effect on Failure of Concrete Beams with and Without Steel Fibers. Journal of Materials in Civil Engineering, 14(5), 436–440. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:5(436)
  • Serin, G. (1999). Pomzanın hafif beton blok duvar elemanı olarak kullanılmasının araştırılması.
  • Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened properties. Resources, Conservation and Recycling, 55(11), 923–932. https://doi.org/10.1016/j.resconrec.2011.06.012
  • Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  • TS 10514. (n.d.). Concrete - Steel Fibre Reinforced - Rules for Mixing Concrete and Control.
  • Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8–14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
  • Yan, H., Sun, W., & Chen, H. (1999). Effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 29(3), 423–426. https://doi.org/10.1016/S0008-8846(98)00235-X
  • Yazıcıoğlu, S., & Bozkurt, N. (2006). Pomza ve mineral katkılı taşıyıcı hafif betonun mekanik özelliklerinin araştırılması. Gazi Üniv. Müh. Mim. Fak. Der., 21(4), 675–680.
  • Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 64, 84–92. https://doi.org/10.1016/j.cemconcomp.2015.10.001
There are 34 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Mahmut Durmaz 0000-0002-6060-4258

Early Pub Date December 17, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Issue: 52

Cite

APA Durmaz, M. (2023). Investigation of Flexural, Compressive Strength and Microstructure of Silica Fume Added Steel Fiber Concrete. Avrupa Bilim Ve Teknoloji Dergisi(52), 183-192.