Research Article
BibTex RIS Cite

Soil hydraulic properties: A simple and practical approach to estimate the number of samples

Year 2020, Volume: 9 Issue: 1, 18 - 23, 01.01.2020
https://doi.org/10.18393/ejss.629344

Abstract

There
have been a number of studies dealing with soil hydraulic properties. Yet,
there is a poor discussion on the number of samples necessary to represent such
variables that usually vary orders of magnitude in space. In the present paper,
we examine the adequate number of samples for two soil saturated hydraulic
conductivity (Ksat) data sets: (1) normal distribution (a 40 year-old pasture)
and (2) non-normal distribution (primary forest). To assess the adequate number
of samples in each case, we used for normal distribution, an statistical
criterion of standard deviation lower than 5% compared to a high sampling
effort (n = 25) as an indicative of a proper representation of Ksat
variability. In the case of non-normal distribution, we used the same criterion
but using median absolute deviation (a non-parametric statistics).  Both data sets were available in Salemi et al. (2013) and were Ksat measured at 0.15 m
soil depth for medium-textured inceptisols in São Paulo State, Brazil. For each
data set, we simulated 10 ‘new’ samplings in which we calculated mean and
standard deviation from sample 1 to 25 (for normal data) and median and median
absolute deviation (for non-normal data). We found that, on average, at least
17 to 22 samples had to be collected to meet the adopted criterion for normal
data whereas 20 to 25 had to be collected for non-normal data. Such numbers of
samples exceed those used in a number of papers. Additional examples of this
method with a light modification are given to establish number of samples in
new study areas as well as to estimate number of samples when comparing two (or
more) land-uses. Simple and practical procedures like those presented here
could estimate the number of samples that adequately represents soil hydraulic
properties variability.   

References

  • Amoozegar A., 1992. Compact constant head permeameter: a convenient device for measuring hydraulic conductivity. In: Advances in measurement of soil physical properties: bringing theory into practice. Topp, C.G., Reynolds, W.D., Green, R.E. (Eds.). Soil Science Society of America, Madison, WI, USA. pp. 31-42.
  • Araújo, R., Goedert, W.J., Lacerda, M.P.C., 2007. Soil quality under different uses and native cerrado. Revista Brasileira de Ciência do Solo 31: 1099-108.
  • Barreto, G.B., 1986. Irrigação: princípios, métodos e prática. Campinas: Instituto Campineiro de Ensino Agrícola. 236p.
  • Bertoni, J.; Lombardi Neto, F., 1990. Conservação do Solo. Ícon, São Paulo. 394p.
  • Beutler, A.N., Silva, M.L.N., Curi, N., Ferreira, M.M., Cruz, J.C., Pereira Filho, I.A., 2001. Resistence to penetration and permeability of a typic dystrophic red latosol under management systems in the cerrado region. Revista Brasileira de Ciência do Solo 25(1): 167-177.
  • Bonell, M., Purandara, B.K., Venkatesh, B., Krishnaswamy, J., Acharya, H.A.K., Singh, U.V., Jayakumar, R., Chappell, N, 2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. Journal of Hydrology 391(1-2): 47-62.
  • Bono, J.A.M., Macedo, M.C.M., Tormena, C.A., Nanni, M.R., Gomes, E.P., Müller, M.M.L., 2012. Water infiltration into an oxisol in the South-west Cerrado region under different use and management systems. Revista Brasileira de Ciência do Solo 36: 1845-1853.
  • Borges, T.A., Oliveira, F.A., Silva, E.M., Goedert, W.J., 2009. Evaluation of soil-water parameters of a Red Latosol under pasture and ‘cerrado’. Revista Brasileira de Engenharia Agrícola e Ambiental 13(1):18-25.
  • Elsenbeer, H., Newton, B.E., Dunne, T., de Moraes, J.M., 1999. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrological Processes 13(9): 1417-1422.
  • Ghimire, C.P., Bonell, M., Bruijnzeel, L.A., Coles, N., Lubczynski, M.W., 2013. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: effects on soil hydraulic conductivity and overland flow production. Journal Geophysical Research Earth Surface 118(4): 2528-2545.
  • Ghimire, C.P., Bruijnzeel, L.A., Bonell, M., Coles, N., Lubczynski, M.W., Gilmour, D.A. 2014. The effect of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal. Ecohydrology 7(2):478-495.
  • Gotelli, N.J., Chao, A., 2013. Measuring an estimating species richness, species diversity, and biotic similarity from sampling data. In: Encyclopedia of Biodiversity. Levin, S.A., (Ed.), Second edition. Vol.5, Waltham, MA, Academic Press, pp.195-211.
  • Hassler, S.K., Lark, R.M., Zimmermann, B., Elsenbeer, H., 2014. Which sampling design to monitor saturated hydraulic conductivity? European Journal of Soil Science 65(6): 792-802.
  • Hassler, S.K., Zimmermann, B., van Breugel, M., Hall, J.S., Elsenbeer, H. 2011. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. Forest Ecology and Management 261(10): 1634-1642.
  • Hewlett, J.D., 1982. Principles of Forest Hydrology. The University of Georgia Press, Athens, Georgia, USA. 183p.
  • Kirkby, M.J., 1978. Hillslope Hydrology. Chichester: John Wiley & Sons. 375p.
  • Mesquita, M.G.B.F., Moraes, S.O., 2004. The dependence of the saturated hydraulic conductivity on physical soil properties. Ciência Rural 34(3): 963-969.
  • Moraes, J.M., Schuler, A.E., Dunne, T., Figueiredo, R.O., Victoria, R.L., 2006. Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes 20(12): 2509-2525.
  • Reichardt, K., Timm, L.C., 2012. Solo, Planta e Atmosfera: Conceitos e Aplicações. Manole, São Paulo. 594p.
  • Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society American Journal 54(5): 1233-1241.
  • Salemi, L.F., Groppo, J.D., Trevisan, R., Moraes, J.M., Ferraz, S.F.B., Villani, J.P., Duarte-Neto, P.J., Martinelli, L.A. 2013. Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology 499: 100-109.
  • Scheffler, R, Neill, C, Krusche, AV, Elsenbeer, HA. 2011. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agriculture Ecosystem and Environment 144(1): 281-289.
  • Silva, CL, Kato, E. 1998. Evaluation of models for the prevision of water infiltration in the soil under savanna. Pesquisa Agropecuária Brasileira 33(7): 1149-1158.
  • Souza, Z.M., Alves, M.C., 2003. Water movement and resistence to penetration in a distrophic Red Latosol of cerrado under different uses and management. Revista Brasileira de Engenharia Agrícola e Ambiental 7(1): 18-23.
  • Vilarinho, R.K., Koetz, M., Schlichting, A.F., Silva, M.C., Bonfum-Silva E.M., 2013. Determination of water steady infiltration rate in native soil from Cerrado. Revista Brasileira de Agricultura Irrigada 7(1):17-26.
  • Zimmermann, B., Elsenbeer, H., Moraes, J.M., 2006. The influence of land-use changes on soil hydraulic properties: implications for runoff generation. Forest Ecology and Management 222(1-3): 29-38.
Year 2020, Volume: 9 Issue: 1, 18 - 23, 01.01.2020
https://doi.org/10.18393/ejss.629344

Abstract

References

  • Amoozegar A., 1992. Compact constant head permeameter: a convenient device for measuring hydraulic conductivity. In: Advances in measurement of soil physical properties: bringing theory into practice. Topp, C.G., Reynolds, W.D., Green, R.E. (Eds.). Soil Science Society of America, Madison, WI, USA. pp. 31-42.
  • Araújo, R., Goedert, W.J., Lacerda, M.P.C., 2007. Soil quality under different uses and native cerrado. Revista Brasileira de Ciência do Solo 31: 1099-108.
  • Barreto, G.B., 1986. Irrigação: princípios, métodos e prática. Campinas: Instituto Campineiro de Ensino Agrícola. 236p.
  • Bertoni, J.; Lombardi Neto, F., 1990. Conservação do Solo. Ícon, São Paulo. 394p.
  • Beutler, A.N., Silva, M.L.N., Curi, N., Ferreira, M.M., Cruz, J.C., Pereira Filho, I.A., 2001. Resistence to penetration and permeability of a typic dystrophic red latosol under management systems in the cerrado region. Revista Brasileira de Ciência do Solo 25(1): 167-177.
  • Bonell, M., Purandara, B.K., Venkatesh, B., Krishnaswamy, J., Acharya, H.A.K., Singh, U.V., Jayakumar, R., Chappell, N, 2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. Journal of Hydrology 391(1-2): 47-62.
  • Bono, J.A.M., Macedo, M.C.M., Tormena, C.A., Nanni, M.R., Gomes, E.P., Müller, M.M.L., 2012. Water infiltration into an oxisol in the South-west Cerrado region under different use and management systems. Revista Brasileira de Ciência do Solo 36: 1845-1853.
  • Borges, T.A., Oliveira, F.A., Silva, E.M., Goedert, W.J., 2009. Evaluation of soil-water parameters of a Red Latosol under pasture and ‘cerrado’. Revista Brasileira de Engenharia Agrícola e Ambiental 13(1):18-25.
  • Elsenbeer, H., Newton, B.E., Dunne, T., de Moraes, J.M., 1999. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrological Processes 13(9): 1417-1422.
  • Ghimire, C.P., Bonell, M., Bruijnzeel, L.A., Coles, N., Lubczynski, M.W., 2013. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: effects on soil hydraulic conductivity and overland flow production. Journal Geophysical Research Earth Surface 118(4): 2528-2545.
  • Ghimire, C.P., Bruijnzeel, L.A., Bonell, M., Coles, N., Lubczynski, M.W., Gilmour, D.A. 2014. The effect of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal. Ecohydrology 7(2):478-495.
  • Gotelli, N.J., Chao, A., 2013. Measuring an estimating species richness, species diversity, and biotic similarity from sampling data. In: Encyclopedia of Biodiversity. Levin, S.A., (Ed.), Second edition. Vol.5, Waltham, MA, Academic Press, pp.195-211.
  • Hassler, S.K., Lark, R.M., Zimmermann, B., Elsenbeer, H., 2014. Which sampling design to monitor saturated hydraulic conductivity? European Journal of Soil Science 65(6): 792-802.
  • Hassler, S.K., Zimmermann, B., van Breugel, M., Hall, J.S., Elsenbeer, H. 2011. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. Forest Ecology and Management 261(10): 1634-1642.
  • Hewlett, J.D., 1982. Principles of Forest Hydrology. The University of Georgia Press, Athens, Georgia, USA. 183p.
  • Kirkby, M.J., 1978. Hillslope Hydrology. Chichester: John Wiley & Sons. 375p.
  • Mesquita, M.G.B.F., Moraes, S.O., 2004. The dependence of the saturated hydraulic conductivity on physical soil properties. Ciência Rural 34(3): 963-969.
  • Moraes, J.M., Schuler, A.E., Dunne, T., Figueiredo, R.O., Victoria, R.L., 2006. Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes 20(12): 2509-2525.
  • Reichardt, K., Timm, L.C., 2012. Solo, Planta e Atmosfera: Conceitos e Aplicações. Manole, São Paulo. 594p.
  • Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society American Journal 54(5): 1233-1241.
  • Salemi, L.F., Groppo, J.D., Trevisan, R., Moraes, J.M., Ferraz, S.F.B., Villani, J.P., Duarte-Neto, P.J., Martinelli, L.A. 2013. Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology 499: 100-109.
  • Scheffler, R, Neill, C, Krusche, AV, Elsenbeer, HA. 2011. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agriculture Ecosystem and Environment 144(1): 281-289.
  • Silva, CL, Kato, E. 1998. Evaluation of models for the prevision of water infiltration in the soil under savanna. Pesquisa Agropecuária Brasileira 33(7): 1149-1158.
  • Souza, Z.M., Alves, M.C., 2003. Water movement and resistence to penetration in a distrophic Red Latosol of cerrado under different uses and management. Revista Brasileira de Engenharia Agrícola e Ambiental 7(1): 18-23.
  • Vilarinho, R.K., Koetz, M., Schlichting, A.F., Silva, M.C., Bonfum-Silva E.M., 2013. Determination of water steady infiltration rate in native soil from Cerrado. Revista Brasileira de Agricultura Irrigada 7(1):17-26.
  • Zimmermann, B., Elsenbeer, H., Moraes, J.M., 2006. The influence of land-use changes on soil hydraulic properties: implications for runoff generation. Forest Ecology and Management 222(1-3): 29-38.
There are 26 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Luiz Felippe Salemi This is me

Rafael Pires Fernandes This is me

Robson Willians Da Costa Silva This is me

Lara Gabrielle Garcia This is me

Jorge Marcos De Moraes This is me

Juliano Daniel Groppo This is me

Luiz Antonio Martinelli This is me

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Salemi, L. F., Fernandes, R. P., Silva, R. W. D. C., Garcia, L. G., et al. (2020). Soil hydraulic properties: A simple and practical approach to estimate the number of samples. Eurasian Journal of Soil Science, 9(1), 18-23. https://doi.org/10.18393/ejss.629344