Research Article
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 1 - 8, 01.01.2025
https://doi.org/10.18393/ejss.1558316

Abstract

References

  • Ballabio, C., Fava, F., Rosenmund, A., 2012. A plant ecology approach to digital soil mapping, improving the prediction of soil organic carbon content in alpine grasslands. Geoderma 187 (188): 102–116.
  • Bhunia, G.S., Shit, P.K., Maiti, R., 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences 17(2):114-126.
  • Blackburn, K.W., Libohova, Z., Adhikari, K., Kome, C., Maness, X., Silman, M.R., 2022. Influence of land use and topographic factors on soil organic carbon stocks and their spatial and vertical distribution. Remote Sensing 14(12):1-22.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods. Klute A., (Ed.). American Society of Agronomy-Soil Science Society of America, Madison, WI, USA. pp. 363–375.
  • Bouyoucous, G.J., 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43: 434-438.
  • Burrough, P.A., McDonnell, R.A., 1998. Principles of Geographical Information Systems. Oxford University Press, USA. 327p.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa Soils. Soil Science Society of America Journal 58(5): 1501-1511.
  • Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S., 2016. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews 56: 246–260.
  • Garcia-Franco, N., Walter, R., Wiesmeier, M., Hurtarte, L.C.C., Berauer, B.J., Buness, V., Zistl-Schlingmann, M., Kiese, R., Dannenmann, M., Kögel-Knabner, I., 2021. Correction to: biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils. Biology and Fertility of Soils 57(2):203-218.
  • Greenwood, D.J., Neeteson, J.J., Draycott, A., 1985. Response of potatoes to N fertilizer: Dynamic model. Plant and Soil 85: 185–203.
  • Günal, E., Budak, M., Kılıç, M., Cemek, B., Sırrı, M., 2023. Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils. Environmental Monitoring and Assessment 195(2): 317.
  • Hendershot, W., Lalande, H., Duquette, M., 2007. Ion Exchange and exchangeable cations, In: Soil sampling and methods of analysis. Carter, M.R., Gregoirch, E.G., (Eds.). CRC press, pp.135-141.
  • Iepema, G., Deru, J.G.C., Bloem, J., Hoekstra, N., de Goede, R., Brussaard, L., van Eekeren, N., 2020. Productivity and topsoil quality of young and old permanent grassland: an on-farm comparison. Sustainability 12(7):2600.
  • Isaaks, E.H., Srivastava, R.M., 1989. An introduction to applied geostatistics. Oxford University Press, New York, 561 p.
  • Kacar, B., 1994. Bitki ve Toprağın Kimyasal Analizleri III Toprak Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma Geliştirme Vakfı Yayınları. Ankara. No. 3, 705s. in Turkish.
  • Kingsley, J., Afu, S.M., Isong, I.A., Chapman, P.A., Kebonye, N.M., Ayito, E.O. 2021. Estimation of soil organic carbon distribution by geostatistical and deterministic interpolation methods: a case study of the southeastern soils of Nigeria. Environmental Engineering & Management Journal 20 (7):1077-1085.
  • Lal, R., Delgado, J.A., Groffman, P.M., Millar, N., Dell, C., Rotz, A., 2011. Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation 66(4): 276–285.
  • Lark, R.M., 2000. Estimating variograms of soil properties by the method-of-moments and maximum likelihood. European Journal of Soil Science 51(4): 717-728.
  • Lewis, C.D., 1982. Industrial and business forecasting methods : A practical guide to exponential smoothing and curve fitting. Butterworth Scientific, Boston, USA. 143p.
  • Li, G., Zhang, J., Zhu, L., Tian, H., Shi, J., Ren, X., 2021. Spatial variation and driving mechanism of soil organic carbon components in the alluvial/sedimentary zone of the Yellow River. Journal of Geographical Sciences 31: 535–550.
  • Li, J., Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics 6(3-4):228-241.
  • Li, Y., Liu, W., Feng, Q., Zhu, M., Yang, L., Zhang, J., 2022. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. Journal of Environmental Management 312: 114911.
  • Li, Y., Wang, X., Chen, Y., Gong, X., Yao, C., Cao, W., Lian, J., 2023. Application of predictor variables to support regression kriging for the spatial distribution of soil organic carbon stocks in native temperate grasslands. Journal of Soils and Sediments 23: 700–717.
  • Liang, Z., Chen, S., Yang, Y., Zhao, R., Shi, Z., Viscarra Rossel, R.A., 2019. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma 335: 47–56.
  • Liu, X., Zhou, T., Zhao, X., Shi, P., Zhang, Y., Xu, Y., Luo, H., Yu, P., Zhou, P., Zhang, Y.,2023. Patterns and drivers of soil carbon change (1980s-2010s) in the northeastern Qinghai-Tibet Plateau. Geoderma 434: 116488.
  • Lu, X., Liao, Y., 2017. Effect of tillage practices on net carbon flux and economic parameters from farmland on the Loess Plateau in China. Journal of Cleaner Production 162: 1617-1624.
  • Ma, Y., Minasny, B., Viaud, V., Walter, C., Malone, B., McBratney, A., 2023. Modelling the whole profile soil organic carbon dynamics considering soil redistribution under future climate change and landscape projections over the lower Hunter Valley, Australia. Land 12(1): 255.
  • Mishra, U., Lal, R., Slater, B., Calhoun, F., Liu, D., Van Meirvenne, M., 2009. Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science Society of America Journal 73(2): 614–621.
  • Moreno, J.J.M., Pol, A.P., Abad, A.S., Blasco, B.C., 2013. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 25(4): 500–506.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon and organic matter. In: Page, A.L., Miller, R.H., Keeney, D.R., (eds) Methods of Soil Analysis, Agronomy, No. Part 2: Chemical and Microbiological Properties. 2nd Ed. ASA Madison, Wisconsin USA, pp 539-579.
  • Orton, T.G., Pringle, M.J., Page, K.L., Dalal, R.C., Bishop, T.F.A., 2014. Spatial prediction of soil organic carbon stock using a linear model of coregionalisation. Geoderma 230: 119–130.
  • Rodríguez Martín, J.A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J.J., Grau Corbí, J.M., Boluda, R., 2016. Assessment of the soil organic carbon stock in Spain. Geoderma 264: 117–125.
  • Rossel, R. V., McBratney, A.B., 2008. Diffuse reflectance spectroscopy as a tool for digital soil mapping, In: Digital soil mapping with limited data. Hartemink, A.E., McBratney, A., Mendonça-Santos, M.L. (Eds.). Springer, Dordrecht, pp. 165-172.
  • Rostaminia, M., Rahmani, A., Mousavi, S.R., Taghizadeh-Mehrjardi, R., Maghsodi, Z., 2021. Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Environmental Monitoring and Assessment 193: 815.
  • Szatmári, G., Pásztor, L., Heuvelink, G.B.M., 2021. Estimating soil organic carbon stock change at multiple scales using machine learning and multivariate geostatistics. Geoderma 403: 115356.
  • Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., Pásztor, L., 2019. Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research 195: 104410.
  • Viscarra Rossel, R.A., Brus, D.J., Lobsey, C., Shi, Z., McLachlan, G., 2016. Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model-assisted and model-based inference. Geoderma 265: 152-163.
  • Wang, G., Mao, J., Fan, L., Ma, X., Li, Y., 2022. Effects of climate and grazing on the soil organic carbon dynamics of the grasslands in Northern Xinjiang during the past twenty years. Global Ecology and Conservation 34: e02039.
  • Wang, S., Xu, L., Zhuang, Q., He, N., 2021. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Science of The Total Environment 758: 143644.
  • Wang, W., Fang, J., 2009. Soil respiration and human effects on global grasslands. Global and Planetary Change 67(1-2): 20-28.
  • Webster, R., 2001. Statistics to support soil research and their presentation. European Journal of Soil Science 52: 331-340.
  • Webster, R., Oliver, M.A., 2008. Geostatistics for environmental scientists. John Wiley & Sons, 317p.
  • Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological 63(11): 1309-1313.
  • Yang, D., Pang, X.P., Jia, Z.F., Guo, Z.G., 2021. Effect of plateau zokor on soil carbon and nitrogen concentrations of alpine meadows. Catena 207: 105625.
  • Yang, Y., Tilman, D., Furey, G., Lehman, C., 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10: 718.
  • Zhang, M.Y., Wang, F.J., Chen, F., Malemela, M.P., Zhang, H.L., 2013. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production 54(1): 101–107.
  • Zhang, P., Wang, Y., Xu, L., Sun, H., Li, R., Zhou, J., 2022. Factors controlling the spatial variability of soil aggregates and associated organic carbon across a semi-humid watershed. Science of The Total Environment 809: 151155.
  • Zhou, X., Wu, W., Niu, K., Du, G., 2019. Realistic loss of plant species diversity decreases soil quality in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment 279:25-32.
  • Zhu, M., Feng, Q., Zhang, M., Liu, W., Qin, Y., Deo, R.C., Zhang, C., 2019. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. Journal of Soils and Sediments 19:1640-1650.

Evaluating the prediction success of soil organic carbon stock in pasture land using different modeling performance metrics

Year 2025, Volume: 14 Issue: 1, 1 - 8, 01.01.2025
https://doi.org/10.18393/ejss.1558316

Abstract

Many national and international initiatives depend on detailed spatial data on changes in soil organic carbon stock (SOC stock) at various scales to support policies aimed at land degradation neutrality and climate change mitigation Developing tools to accurately model the spatial distribution of SOCstock at national scales is a priority for both monitoring soil organic carbon (SOC) changes and contributing to global carbon cycle studies. The primary goal of this study was to evaluate and compare various spatial performance metrics used to assess the accuracy of predicting soil SOC and SOCstock content in a semi-arid pasture. Soil samples were taken from 0-20 cm soil depth at 150 random sampling points. Spatial structure of SOCstock and SOC were modelled by ordinary kriging The soil pH varied from slightly acidic (6.34) to neutral (7.19), and salinity was not an issue in the study area. Lime content, with an average of 2.04%, stands out as the most variable soil property, with a coefficient of variation (CV) of 61.76%. The carbon stock ranged from 23.46 to 65.36 tons ha-1, with an average carbon stock of 43.28 tons ha-1 calculated. In the study area, SOC (%) and stoniness (%) had the shortest autocorrelation distance (21.00 m), while bulk density had the longest (27.00 m). The prediction errors indicated that parameters in the random sampling did not result in better predictions using the OK technique.The results indicated that SOC content can exhibit significant spatial variability even within a small area, highlighting the need for site-specific management in semi-arid pastures. In order to achieve high accuracy and success in modeling, metrics of the performance such as RRMSE, RMSE and MAPE should be used that minimize the effect of the relevant soil property measurement unit.

References

  • Ballabio, C., Fava, F., Rosenmund, A., 2012. A plant ecology approach to digital soil mapping, improving the prediction of soil organic carbon content in alpine grasslands. Geoderma 187 (188): 102–116.
  • Bhunia, G.S., Shit, P.K., Maiti, R., 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences 17(2):114-126.
  • Blackburn, K.W., Libohova, Z., Adhikari, K., Kome, C., Maness, X., Silman, M.R., 2022. Influence of land use and topographic factors on soil organic carbon stocks and their spatial and vertical distribution. Remote Sensing 14(12):1-22.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods. Klute A., (Ed.). American Society of Agronomy-Soil Science Society of America, Madison, WI, USA. pp. 363–375.
  • Bouyoucous, G.J., 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43: 434-438.
  • Burrough, P.A., McDonnell, R.A., 1998. Principles of Geographical Information Systems. Oxford University Press, USA. 327p.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa Soils. Soil Science Society of America Journal 58(5): 1501-1511.
  • Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S., 2016. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews 56: 246–260.
  • Garcia-Franco, N., Walter, R., Wiesmeier, M., Hurtarte, L.C.C., Berauer, B.J., Buness, V., Zistl-Schlingmann, M., Kiese, R., Dannenmann, M., Kögel-Knabner, I., 2021. Correction to: biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils. Biology and Fertility of Soils 57(2):203-218.
  • Greenwood, D.J., Neeteson, J.J., Draycott, A., 1985. Response of potatoes to N fertilizer: Dynamic model. Plant and Soil 85: 185–203.
  • Günal, E., Budak, M., Kılıç, M., Cemek, B., Sırrı, M., 2023. Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils. Environmental Monitoring and Assessment 195(2): 317.
  • Hendershot, W., Lalande, H., Duquette, M., 2007. Ion Exchange and exchangeable cations, In: Soil sampling and methods of analysis. Carter, M.R., Gregoirch, E.G., (Eds.). CRC press, pp.135-141.
  • Iepema, G., Deru, J.G.C., Bloem, J., Hoekstra, N., de Goede, R., Brussaard, L., van Eekeren, N., 2020. Productivity and topsoil quality of young and old permanent grassland: an on-farm comparison. Sustainability 12(7):2600.
  • Isaaks, E.H., Srivastava, R.M., 1989. An introduction to applied geostatistics. Oxford University Press, New York, 561 p.
  • Kacar, B., 1994. Bitki ve Toprağın Kimyasal Analizleri III Toprak Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma Geliştirme Vakfı Yayınları. Ankara. No. 3, 705s. in Turkish.
  • Kingsley, J., Afu, S.M., Isong, I.A., Chapman, P.A., Kebonye, N.M., Ayito, E.O. 2021. Estimation of soil organic carbon distribution by geostatistical and deterministic interpolation methods: a case study of the southeastern soils of Nigeria. Environmental Engineering & Management Journal 20 (7):1077-1085.
  • Lal, R., Delgado, J.A., Groffman, P.M., Millar, N., Dell, C., Rotz, A., 2011. Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation 66(4): 276–285.
  • Lark, R.M., 2000. Estimating variograms of soil properties by the method-of-moments and maximum likelihood. European Journal of Soil Science 51(4): 717-728.
  • Lewis, C.D., 1982. Industrial and business forecasting methods : A practical guide to exponential smoothing and curve fitting. Butterworth Scientific, Boston, USA. 143p.
  • Li, G., Zhang, J., Zhu, L., Tian, H., Shi, J., Ren, X., 2021. Spatial variation and driving mechanism of soil organic carbon components in the alluvial/sedimentary zone of the Yellow River. Journal of Geographical Sciences 31: 535–550.
  • Li, J., Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics 6(3-4):228-241.
  • Li, Y., Liu, W., Feng, Q., Zhu, M., Yang, L., Zhang, J., 2022. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. Journal of Environmental Management 312: 114911.
  • Li, Y., Wang, X., Chen, Y., Gong, X., Yao, C., Cao, W., Lian, J., 2023. Application of predictor variables to support regression kriging for the spatial distribution of soil organic carbon stocks in native temperate grasslands. Journal of Soils and Sediments 23: 700–717.
  • Liang, Z., Chen, S., Yang, Y., Zhao, R., Shi, Z., Viscarra Rossel, R.A., 2019. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma 335: 47–56.
  • Liu, X., Zhou, T., Zhao, X., Shi, P., Zhang, Y., Xu, Y., Luo, H., Yu, P., Zhou, P., Zhang, Y.,2023. Patterns and drivers of soil carbon change (1980s-2010s) in the northeastern Qinghai-Tibet Plateau. Geoderma 434: 116488.
  • Lu, X., Liao, Y., 2017. Effect of tillage practices on net carbon flux and economic parameters from farmland on the Loess Plateau in China. Journal of Cleaner Production 162: 1617-1624.
  • Ma, Y., Minasny, B., Viaud, V., Walter, C., Malone, B., McBratney, A., 2023. Modelling the whole profile soil organic carbon dynamics considering soil redistribution under future climate change and landscape projections over the lower Hunter Valley, Australia. Land 12(1): 255.
  • Mishra, U., Lal, R., Slater, B., Calhoun, F., Liu, D., Van Meirvenne, M., 2009. Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science Society of America Journal 73(2): 614–621.
  • Moreno, J.J.M., Pol, A.P., Abad, A.S., Blasco, B.C., 2013. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 25(4): 500–506.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon and organic matter. In: Page, A.L., Miller, R.H., Keeney, D.R., (eds) Methods of Soil Analysis, Agronomy, No. Part 2: Chemical and Microbiological Properties. 2nd Ed. ASA Madison, Wisconsin USA, pp 539-579.
  • Orton, T.G., Pringle, M.J., Page, K.L., Dalal, R.C., Bishop, T.F.A., 2014. Spatial prediction of soil organic carbon stock using a linear model of coregionalisation. Geoderma 230: 119–130.
  • Rodríguez Martín, J.A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J.J., Grau Corbí, J.M., Boluda, R., 2016. Assessment of the soil organic carbon stock in Spain. Geoderma 264: 117–125.
  • Rossel, R. V., McBratney, A.B., 2008. Diffuse reflectance spectroscopy as a tool for digital soil mapping, In: Digital soil mapping with limited data. Hartemink, A.E., McBratney, A., Mendonça-Santos, M.L. (Eds.). Springer, Dordrecht, pp. 165-172.
  • Rostaminia, M., Rahmani, A., Mousavi, S.R., Taghizadeh-Mehrjardi, R., Maghsodi, Z., 2021. Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Environmental Monitoring and Assessment 193: 815.
  • Szatmári, G., Pásztor, L., Heuvelink, G.B.M., 2021. Estimating soil organic carbon stock change at multiple scales using machine learning and multivariate geostatistics. Geoderma 403: 115356.
  • Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., Pásztor, L., 2019. Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research 195: 104410.
  • Viscarra Rossel, R.A., Brus, D.J., Lobsey, C., Shi, Z., McLachlan, G., 2016. Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model-assisted and model-based inference. Geoderma 265: 152-163.
  • Wang, G., Mao, J., Fan, L., Ma, X., Li, Y., 2022. Effects of climate and grazing on the soil organic carbon dynamics of the grasslands in Northern Xinjiang during the past twenty years. Global Ecology and Conservation 34: e02039.
  • Wang, S., Xu, L., Zhuang, Q., He, N., 2021. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Science of The Total Environment 758: 143644.
  • Wang, W., Fang, J., 2009. Soil respiration and human effects on global grasslands. Global and Planetary Change 67(1-2): 20-28.
  • Webster, R., 2001. Statistics to support soil research and their presentation. European Journal of Soil Science 52: 331-340.
  • Webster, R., Oliver, M.A., 2008. Geostatistics for environmental scientists. John Wiley & Sons, 317p.
  • Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological 63(11): 1309-1313.
  • Yang, D., Pang, X.P., Jia, Z.F., Guo, Z.G., 2021. Effect of plateau zokor on soil carbon and nitrogen concentrations of alpine meadows. Catena 207: 105625.
  • Yang, Y., Tilman, D., Furey, G., Lehman, C., 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10: 718.
  • Zhang, M.Y., Wang, F.J., Chen, F., Malemela, M.P., Zhang, H.L., 2013. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production 54(1): 101–107.
  • Zhang, P., Wang, Y., Xu, L., Sun, H., Li, R., Zhou, J., 2022. Factors controlling the spatial variability of soil aggregates and associated organic carbon across a semi-humid watershed. Science of The Total Environment 809: 151155.
  • Zhou, X., Wu, W., Niu, K., Du, G., 2019. Realistic loss of plant species diversity decreases soil quality in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment 279:25-32.
  • Zhu, M., Feng, Q., Zhang, M., Liu, W., Qin, Y., Deo, R.C., Zhang, C., 2019. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. Journal of Soils and Sediments 19:1640-1650.
There are 49 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Ülkü Yılmaz 0000-0001-5031-0523

Seval Sünal Kavaklıgil 0000-0002-0560-0086

Publication Date January 1, 2025
Submission Date May 2, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Yılmaz, Ü., & Sünal Kavaklıgil, S. (2025). Evaluating the prediction success of soil organic carbon stock in pasture land using different modeling performance metrics. Eurasian Journal of Soil Science, 14(1), 1-8. https://doi.org/10.18393/ejss.1558316