Research Article
BibTex RIS Cite

Neutronic Analysis and Performance Assessment of UF4-Based Gas Core Reactors with BeO Reflector

Year 2026, Volume: 15 Issue: 2, 247 - 250, 29.01.2026

Abstract

Gas core reactors (GCRs) are considered a key element in Generation IV nuclear systems, expected to surpass all existing and proposed fission technologies in sustainability, resistance to nuclear proliferation, and power conversion efficiency. In this study, the neutron multiplication factor, which is one of the most critical parameters in reactor operation, was found to vary between 0.962 and 1.005. The operation period of the study, governed by the effect of the neutron multiplication factor, was set to 730 days. In the neutronic calculations, the system power was 1000 MW, and the resulting power density at the end of the operation period was 4715 W/cm³. The gaseous core reactor (GCR) configuration utilized a uranium tetrafluoride (UF4)-based gaseous fuel surrounded by beryllium oxide (BeO) reflector and shielding regions. Neutronic analyses performed with the MCNPX code confirmed that BeO improved neutron economy and thermal stability, enhancing overall reactor performance. The cumulative fissile fuel enrichment (CFFE) increased gradually throughout the operation, indicating efficient conversion of fertile isotopes into fissile material. Furthermore, a noticeable accumulation of fission products was observed, reflecting the system’s sustained fission activity. Overall, the findings demonstrate that the GCR system maintained stable subcritical operation, efficient fuel utilization, and long-term neutronic balance, confirming its strong potential for future sustainable nuclear energy applications.

References

  • 1] B. Kvizda et al., “Allegro gas-cooled Fast Reactor (GFR) demonstrator thermal hydraulic benchmark,” Nuclear Engineering and Design, vol. 345, pp. 47–61, Apr. 2019. doi: 10.1016/j.nucengdes.2019.02.006.
  • [2] M. P. Da̧Browski et al., “Concept of the polish high temperature gas-cooled reactor HTGR-POLA,” Nuclear Engineering and Design, vol. 424, p. 113197, Apr. 2024, doi: 10.1016/j.nucengdes.2024.113197.
  • [3] F. Bostelmann, C. Celik, M. L. Williams, R. J. Ellis, G. Ilas, and W. A. Wieselquist, “SCALE capabilities for high temperature gas-cooled reactor analysis,” Annals of Nuclear Energy, vol. 147, p. 107673, Jul. 2020, doi: 10.1016/j.anucene.2020.107673.
  • [4] D. Ilas, “SCALE Code Validation for Prismatic High-Temperature Gas-Cooled reactors,” Nuclear Technology, vol. 183, no. 3, pp. 379–390, Sep. 2013, doi: 10.13182/nt13-a19426.
  • [5] B. J. Adigun, M. L. Fensin, J. D. Galloway, and H. R. Trellue, “Maintaining a critical spectrum within Monteburns for a gas-cooled reactor array by way of control rod manipulation,” Annals of Nuclear Energy, vol. 96, pp. 36–60, Jun. 2016, doi: 10.1016/j.anucene.2016.05.025.
  • [6] Ibrahim, M. Harkema, S. Krahn, H. Choi, J. Bolin, and E. Thornsbury, “Literature Review of Preliminary Initiating Events for a Gas-Cooled Fast Reactor Conceptual Design,” Nuclear Technology, pp. 1–24, May 2025, doi: 10.1080/00295450.2025.2472573.
  • [7] W. Xianbo et al., “Thermal safety characteristics analysis of helium xenon gas cooled small reactor system under LOCA accidents,” Nuclear Engineering and Design, vol. 426, p. 113376, Jun. 2024, doi: 10.1016/j.nucengdes.2024.113376.
  • [8] H. Zhao, J. Wu, S. Chen, Y. Cui, J. Chen, and X. Cai, “Conceptual design of a novel megawatt molten salt reactor cooled by He-XE gas,” International Journal of Energy Research, vol. 2023, pp. 1–15, Oct. 2023, doi: 10.1155/2023/8825501.
  • [9] F. Scioscioli, A. Cammi, and S. Lorenzi, “Analysis of the operational and safety features of the In-Core bubbling system of the Molten Salt Fast Reactor,” Nuclear Science and Engineering, vol. 198, no. 6, pp. 1288–1307, Oct. 2023, doi: 10.1080/00295639.2023.2250144.
  • [10] Y. Wang, K. Sridharan, and A. Couet, “Method for identification of redox control parameters for corrosion mitigation in molten fluoride salts,” Journal of Nuclear Materials, vol. 543, p. 152624, Oct. 2020, doi: 10.1016/j.jnucmat.2020.152624.
  • [11] B. M. Smith and S. Anghaie, “Gas Core Reactor with Magnetohydrodynamic Power System and Cascading Power Cycle,” Nuclear Technology, vol. 145, no. 3, pp. 311–318, Mar. 2004, doi: 10.13182/nt04-a3480.
  • [12] S. Pinem, T. Surbakti, E. P. Hastuti, and W. Luthfi, “Transition Core from Oxide to Silicide Fuel for Indonesian Multipurpose Research Reactor RSG-GAS,” Nuclear Technology, pp. 1–16, May 2025, doi: 10.1080/00295450.2025.2472552.
  • [13] S. Pinem et al., “Review on the fuel management strategy of the RSG-GAS equilibrium core,” Annals of Nuclear Energy, vol. 213, p. 111180, Jan. 2025, doi: 10.1016/j.anucene.2024.111180.
  • [14] A. Huning, S. Chandrasekaran, and S. Garimella, “Whole-core transient analysis methodology for prismatic high temperature gas reactors,” Nuclear Engineering and Design, vol. 368, p. 110788, Aug. 2020, doi: 10.1016/j.nucengdes.2020.110788.
  • [15] R. Norring, “Optimum Utilization of Fission Power with Gas Core Reactors,” M.S. thesis, Dept. Nuclear and Radiological Eng., Florida Univ., Florida, United States of Amerika, 2004.
  • [16] Pelowitz, D.B., MCNPX User’s Manual, Version 2.7.0,LA-CP-11-00438, Los Alamos Scientific Laboratory, 2011.
  • [17] Yapıcı H., 2017. XBURN interface computer code for evaluation of time-dependent MCNPX 2.7 outputs, Erciyes University, Turkey.

BeO Reflektörlü UF4 Tabanlı Gaz Çekirdekli Reaktörlerin Nötronik Analizi ve Performans Değerlendirmesi

Year 2026, Volume: 15 Issue: 2, 247 - 250, 29.01.2026

Abstract

Gaz çekirdekli reaktörler (GCR’ler), sürdürülebilirlik, nükleer silahlanmaya karşı direnç ve güç dönüşüm verimliliği açısından mevcut ve önerilen tüm fisyon teknolojilerini geride bırakması beklenen IV. Nesil nükleer sistemlerin temel bileşenlerinden biri olarak değerlendirilmektedir. Bu çalışmada, reaktör işletimi açısından en kritik parametrelerden biri olan nötron çoğaltma katsayısının (kₑff) 0.962 ile 1.005 aralığında değiştiği belirlenmiştir. Nötron çoğaltma katsayısının etkisi doğrultusunda çalışma için operasyon süresi 730 gün olarak belirlenmiştir. Nötronik hesaplamalarda sistem gücü 1000 MW olarak alınmış ve operasyon periyodunun sonunda elde edilen güç yoğunluğu 4715 W/cm³ olarak hesaplanmıştır. Gaz çekirdekli reaktör (GCR) konfigürasyonu, UF₄ tabanlı gaz yakıtı ile çevrelenmiş BeO reflektör ve zırh bölgelerinden oluşmaktadır. MCNPX kodu ile yapılan nötronik analizler, BeO’nun nötron ekonomisini ve termal stabiliteyi iyileştirdiğini, böylece genel reaktör performansını artırdığını doğrulamıştır. Operasyon boyunca kümülatif fisil yakıt zenginliği (CFFE) değerinin düzenli olarak artması, verimli olmayan izotopların fisil malzemeye etkin biçimde dönüştüğünü göstermektedir. Ayrıca, sistemdeki sürekli fisyon aktivitesini yansıtan belirgin bir fisyon ürünü birikimi gözlenmiştir. Genel olarak bulgular, GCR sisteminin kararlı altkritik çalışma, verimli yakıt kullanımı ve uzun dönemli nötronik denge sağladığını ortaya koymakta; bu reaktör tipinin gelecekte sürdürülebilir nükleer enerji uygulamaları için güçlü bir potansiyel taşıdığını doğrulamaktadır.

References

  • 1] B. Kvizda et al., “Allegro gas-cooled Fast Reactor (GFR) demonstrator thermal hydraulic benchmark,” Nuclear Engineering and Design, vol. 345, pp. 47–61, Apr. 2019. doi: 10.1016/j.nucengdes.2019.02.006.
  • [2] M. P. Da̧Browski et al., “Concept of the polish high temperature gas-cooled reactor HTGR-POLA,” Nuclear Engineering and Design, vol. 424, p. 113197, Apr. 2024, doi: 10.1016/j.nucengdes.2024.113197.
  • [3] F. Bostelmann, C. Celik, M. L. Williams, R. J. Ellis, G. Ilas, and W. A. Wieselquist, “SCALE capabilities for high temperature gas-cooled reactor analysis,” Annals of Nuclear Energy, vol. 147, p. 107673, Jul. 2020, doi: 10.1016/j.anucene.2020.107673.
  • [4] D. Ilas, “SCALE Code Validation for Prismatic High-Temperature Gas-Cooled reactors,” Nuclear Technology, vol. 183, no. 3, pp. 379–390, Sep. 2013, doi: 10.13182/nt13-a19426.
  • [5] B. J. Adigun, M. L. Fensin, J. D. Galloway, and H. R. Trellue, “Maintaining a critical spectrum within Monteburns for a gas-cooled reactor array by way of control rod manipulation,” Annals of Nuclear Energy, vol. 96, pp. 36–60, Jun. 2016, doi: 10.1016/j.anucene.2016.05.025.
  • [6] Ibrahim, M. Harkema, S. Krahn, H. Choi, J. Bolin, and E. Thornsbury, “Literature Review of Preliminary Initiating Events for a Gas-Cooled Fast Reactor Conceptual Design,” Nuclear Technology, pp. 1–24, May 2025, doi: 10.1080/00295450.2025.2472573.
  • [7] W. Xianbo et al., “Thermal safety characteristics analysis of helium xenon gas cooled small reactor system under LOCA accidents,” Nuclear Engineering and Design, vol. 426, p. 113376, Jun. 2024, doi: 10.1016/j.nucengdes.2024.113376.
  • [8] H. Zhao, J. Wu, S. Chen, Y. Cui, J. Chen, and X. Cai, “Conceptual design of a novel megawatt molten salt reactor cooled by He-XE gas,” International Journal of Energy Research, vol. 2023, pp. 1–15, Oct. 2023, doi: 10.1155/2023/8825501.
  • [9] F. Scioscioli, A. Cammi, and S. Lorenzi, “Analysis of the operational and safety features of the In-Core bubbling system of the Molten Salt Fast Reactor,” Nuclear Science and Engineering, vol. 198, no. 6, pp. 1288–1307, Oct. 2023, doi: 10.1080/00295639.2023.2250144.
  • [10] Y. Wang, K. Sridharan, and A. Couet, “Method for identification of redox control parameters for corrosion mitigation in molten fluoride salts,” Journal of Nuclear Materials, vol. 543, p. 152624, Oct. 2020, doi: 10.1016/j.jnucmat.2020.152624.
  • [11] B. M. Smith and S. Anghaie, “Gas Core Reactor with Magnetohydrodynamic Power System and Cascading Power Cycle,” Nuclear Technology, vol. 145, no. 3, pp. 311–318, Mar. 2004, doi: 10.13182/nt04-a3480.
  • [12] S. Pinem, T. Surbakti, E. P. Hastuti, and W. Luthfi, “Transition Core from Oxide to Silicide Fuel for Indonesian Multipurpose Research Reactor RSG-GAS,” Nuclear Technology, pp. 1–16, May 2025, doi: 10.1080/00295450.2025.2472552.
  • [13] S. Pinem et al., “Review on the fuel management strategy of the RSG-GAS equilibrium core,” Annals of Nuclear Energy, vol. 213, p. 111180, Jan. 2025, doi: 10.1016/j.anucene.2024.111180.
  • [14] A. Huning, S. Chandrasekaran, and S. Garimella, “Whole-core transient analysis methodology for prismatic high temperature gas reactors,” Nuclear Engineering and Design, vol. 368, p. 110788, Aug. 2020, doi: 10.1016/j.nucengdes.2020.110788.
  • [15] R. Norring, “Optimum Utilization of Fission Power with Gas Core Reactors,” M.S. thesis, Dept. Nuclear and Radiological Eng., Florida Univ., Florida, United States of Amerika, 2004.
  • [16] Pelowitz, D.B., MCNPX User’s Manual, Version 2.7.0,LA-CP-11-00438, Los Alamos Scientific Laboratory, 2011.
  • [17] Yapıcı H., 2017. XBURN interface computer code for evaluation of time-dependent MCNPX 2.7 outputs, Erciyes University, Turkey.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Alper Buğra Arslan 0000-0001-9964-2342

Submission Date November 14, 2025
Acceptance Date December 25, 2025
Publication Date January 29, 2026
Published in Issue Year 2026 Volume: 15 Issue: 2

Cite

APA Arslan, A. B. (2026). Neutronic Analysis and Performance Assessment of UF4-Based Gas Core Reactors with BeO Reflector. European Journal of Technique (EJT), 15(2), 247-250. https://doi.org/10.36222/ejt.1823690

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı