Research Article
BibTex RIS Cite

Etil Alkol Toksikasyonunda Chlorella Vulgaris'in Koruyucu Etkisi

Year 2022, , 73 - 78, 31.12.2022
https://doi.org/10.51262/ejtox.1174600

Abstract

Amaç: Bu çalışmanın amacı, etil alkol toksikasyonunda Chlorella vulgaris'in karaciğer, kalp ve böbrek MAPK (Mitojen ile aktive olan protein kinaz) aktivasyonu ile lipid peroksidasyon ve antioksidan enzim düzeylerine etkisinin incelenmesidir.
Gereç ve Yöntem: 10-12 aylık, 200-250 gr ağırlığında 24 adet erişkin erkek Sprague Dawley ratlar 3 gruba ayrılarak her grupta 8 hayvan bulunacak şekilde 2 deney ve 1 kontrol grubundan oluşturuldu. Kontrol grubuna 5 mg/kg izoklorik maltoz gavajla 12 saatte bir verildi. Alkol grubu (n=8)’nda bulunan ratlara 15g/kg olacak şekilde ve %50 su ile dilüe edilerek Etil alkol, Chlorella grubu (n=8)’nda bulunan ratlara önce 300 mg/kg Chlorella ve daha sonra %50 su ile dilüe edilerek 15g/kg verildi. Deney sonunda, punksiyonla kan örnekleri alındı. İntrakardiyal yolla EDTA’lı tüplere alınan kan numuneleri, +4° C, 3000 rpm’de, 5 dakika santrifüj edilerek plazmalar ve metotlara uygun olarak hazırlanan homojenatlar polietilen tüplere konularak laboratuvar işlemlerine kadar -20° C’de saklandı. Alınan kan numuneleri, MAPK, GSH ve GSH-Px değerlerine bakılmak üzere kullanıldı.
Bulgular: Etil alkol toksikasyonu sonucunda MAPK aktivitelerinin karaciğer dokusunda Chlorella vulgaris ile azaldığı, böbrek ve kalp dokularında ise alkol etkisi ile azalan MAPK aktivitelerinin Chlorella vulgaris ile yükseldiği tespit edilmiştir. Grupların alkol etkisi ile doku GSH-Px düzeylerinde meydana gelen azalmanın Chlorella vulgaris uygulaması ile belirgin şekilde yükseldiği belirlenmiştir (p<0.05). Karaciğer ve böbrek dokusunda azalan GSH düzeylerinin Chlorella vulgaris ile anlamlı biçimde yükseldiği tespit edilmiştir (p<0.05). Grupların doku MDA düzeyleri karşılaştırıldığında alkol etkisi ile yükselen MDA düzeylerinin karaciğer ve kalp dokularında Chlorella vulgaris ile anlamlı şekilde azaldığı belirlenmiştir (sırasıyla p<0.001, p<0.001, p<0.05).
Sonuç: Sonuç olarak alkol etkisi ile dokularda oluşan lipid peroksidasyona karşı Chlorella vulgaris’in antioksidan enzim düzeylerini özellikle karaciğer dokusunda yükselttiği ve bu etkisi ile doku koruyucu aktiviteye sahip olduğu değerlendirilmiştir. Ayrıca alkol toksikasyonu sonucu karaciğer dokusunda yükselen MAPK aktiviteleri Chlorella etkisi ile düzelmiş ve bu durum Chlorella’nın hücre içi enzim sistemlerini koruması olarak değerlendirildi.

References

  • Muhtar N. Alkol Bağımlılarında Bağlanma. İstanbul: İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü, Psikiyatri Anabilim Dalı. 2003.
  • Can M, Gürpınar SS, İşler H, Varol N, Gürpınarlı Z. Alkol Alan Kişilerin Kan Alkol Düzeyinin Solunum Havasındaki Alkol Düzeyi İle Karşılaştırılması Ve Karaciğer Enzimlerinin Etkisinin Araştırılması. Van Tıp Dergisi. 2008; 15(3): 75-80.
  • Andresen-Streichert H, Müller A, Glahn A, Skopp G, Sterneck M. Alcohol biomarkers in clinical and forensic contexts. Deutsches Ärzteblatt International; 2018. 115(18), 309.
  • Kültegin Ö, Defne T. Alkol ve Madde Kullanım Bozukluklarının Epidemiyolojisi. 3P Dergisi. 2003; 11(2): 123-128.
  • Chen L, Tang J, Song LN, Chen P, He J, Au CT et al. Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons. Applied Catalysis B: Environmental. 2019;242, 379-388.
  • Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology. 2020; 45(1), 141-165.
  • Palzes VA, Parthasarathy S, Chi FW, Kline‐Simon AH, Lu Y, Weisner C, et al. Associations between psychiatric disorders and alcohol consumption levels in an adult primary care population. Alcoholism: clinical and experimental research. 2020;44(12), 2536-2544.
  • Scafato E, Caputo F, Patussi V, Balbinot P, Addolorato G, Testino G. The undertreatment of alcohol-related liver diseases among people with alcohol use disorder. Eur Rev Med Pharmacol Sci. 2020; 24(2), 974-82.
  • Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR. Diagnosis and treatment of alcohol‐associated liver diseases: 2019 practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2020; 71(1), 306-33.
  • Sonde V, D’souza A, Tarapore R, Pereira L, Khare MP, Sinkar P, et al. Simultaneous administration of diethylphthalate and ethyl alcohol and its toxicity in male Sprague-Dawley rats. Toxicology. 2000; (147) : 23-31.
  • Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. Journal of hepatology. 2019;70(2), 294-304.
  • Sefarini M, Rio DD. Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool. Redox Report. 2004; 9(3). 145-152.
  • Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth defects research. 2019; 111(12), 714-748.
  • Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress—A Key Player in the Course of Alcohol-Related Liver Disease. Journal of clinical medicine. 2021; 10(14), 3011.
  • Żukowski, P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Archives of Oral Biology. 2018; 92, 8-17.
  • Engwa GA. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: Source of Antioxidants and Role in Disease Prevention. BoD–Books on Demand. 2018;7, 49-74.
  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity. 2019.
  • Morales M, Munné-Bosch S. Malondialdehyde: facts and artifacts. Plant physiology. 2019; 180(3), 1246-1250.
  • Lushchak VI, Lushchak O. Interplay between reactive oxygen and nitrogen species in living organisms. Chemico-Biological Interactions. 2021; 349, 109680.
  • Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biology and Medicine. 2020; 152, 175-185.
  • Alkadi H. A review on free radicals and antioxidants. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2020; 20(1), 16-26.
  • Yu M, Chen M, Gui J, Huang S, Liu Y, Shentu H, He J, Fang Z, Wang W, Zhang Y. (). Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. International journal of biological macromolecules. 2019; 137, 139-150.
  • Abdel-Karim OH, Gheda SF, Ismail GA, Abo-Shady AM. Phytochemical Screening and antioxidant activity of Chlorella vulgaris. Delta Journal of Science. 2020; 41(1), 81-91.
  • Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. International Journal of Molecular Sciences. 2020; 21(7), 2346.
  • Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry. 1966; 16(2), 359-364.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry. 1968; 25, 192-205.
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications. 1976; 71(4), 952-958.
  • Jacob A, Wang P. Alcohol intoxication and cognition: implications on mechanisms and therapeutic strategies. Frontiers in neuroscience. 2020; 14, 102.
  • Gao S, Shi J, Wang K, Tan Y, Hong H, Luo Y. Protective effects of oyster protein hydrolysates on alcohol-induced liver disease (ALD) in mice: based on the mechanism of anti-oxidative metabolism. Food & Function. 2022;16.
  • Wu C, Liu J, Tang Y, Li, Ya, Q, Jiang Z. Hepatoprotective potential of partially hydrolyzed guar gum against acute alcohol-induced liver injury in vitro and vivo. Nutrients. 2019; 11(5), 963.
  • Fontes-Júnior EA, Maia CSF, Fernandes LMP, Gomes-Leal W, Costa-Malaquias A, Lima RR et al. Chronic alcohol intoxication and cortical ischemia: study of their comorbidity and the protective effects of minocycline. Oxidative Med. Cell. Longev. 2016; 1341453.
  • Carrard VC, Pires AS, Mendez M, Mattos F, Moreira JCF, Sant’Ana Filho M. Effects of acute alcohol consumption and vitamin E co-treatment on oxidative stress parameters in rats tongue. Food and chemical toxicology. 2009; 47(6), 1058-1063.
  • Wu D, Cederbaum AI. Oxidative stress and alcoholic liver disease. In Seminars in liver disease 2009; 29(02),141-154.
  • Mallick N. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. Journal of Plant Physiology. 2004;161(5), 591-597.
  • Shim JY, Shin HS, Han JG, Park HS, Lim BL, Chung KW, et al. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats. Journal of Medicinal Food. 2008;11(3), 479-485.
  • Yun H, Kim I, Kwon SH, Kang JS, Om AS. Protective effect of Chlorella vulgaris against lead-induced oxidative stress in rat brains. Journal of Health Science. 2011; 57(3), 245-254.
  • Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life sciences. 2004; 74(19), 2339-2364.
  • Le Daré B, Lagente V, Gicquel T. Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug metabolism reviews. 2019;51(4), 545-561.
  • Matyas C, Haskó G, Liaudet L, Trojnar E, Pacher P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nature Reviews Cardiology. 2021; 18(2), 117-135

Protective Effects of Chlorella Vulgaris in Alcohol Intoxication

Year 2022, , 73 - 78, 31.12.2022
https://doi.org/10.51262/ejtox.1174600

Abstract

Objectives: The aim of the study, to investigate the effect of Chlorella vulgaris on the liver, kidney and heart MAPK (Mitogen-activated protein kinase), lipid peroxidation antioxidant enzyme activity with ethyl alcohol toxification.
Materials and Methods: 10-12 monthly, weighing 200-250 gr, 24 adult male Sprague Dawley rats were used. Rats were divided into 3 (n=8) groups which 2 experiments and a control. 5mg/kg of isocaloric maltose was given to the control group by gavage. 15 g/kg ethyl alcohol diluted with 50% water was given to the alcohol group and 300 mg/kg C. vulgaris and then 15 g/kg ethyl alcohol diluted with 50% water were given to C. vulgaris group. At the end of the experiment tissue samples were taken. Blood samples were collected into EDTA tubes and the tissues were kept at -20°C. The blood and tissue samples were used to investigate the GSH/GSH-Px, MAPK activity and MDA levels.
Results: MAPK activities in liver and lung tissue were increased with C. vulgaris which decrease with ethyl alcohol while MAPK activities in kidney and heart tissue decreased with C. vulgaris. The reduction in tissue GSH-Px levels with alcohol was increased significantly with C. vulgaris application (p<0.05). The declining GSH levels of liver and kidney tissue with alcohol were found to significantly increase with C. vulgaris (p<0.05). When tissue MDA levels of groups were compared, increasing MDA levels with alcohol in liver and heart tissues were determined to significantly decrease with C. vulgaris (p<0.001, p<0.05 respectively).
Conclusion: As a conclusion, C. vulgaris increased antioxidant enzyme activity especially in liver tissues and decreased lipid peroxidation in tissue which arises with ethyl alcohol that was evaluated this effect has tissue protective activity of C. vulgaris. Also, increasing in liver tissue MAPK activities as a result of alcohol toxication was fixed with C. vulgaris. This situation may be associated with a protective effect on the intracellular enzyme system activity of C. vulgaris.

References

  • Muhtar N. Alkol Bağımlılarında Bağlanma. İstanbul: İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü, Psikiyatri Anabilim Dalı. 2003.
  • Can M, Gürpınar SS, İşler H, Varol N, Gürpınarlı Z. Alkol Alan Kişilerin Kan Alkol Düzeyinin Solunum Havasındaki Alkol Düzeyi İle Karşılaştırılması Ve Karaciğer Enzimlerinin Etkisinin Araştırılması. Van Tıp Dergisi. 2008; 15(3): 75-80.
  • Andresen-Streichert H, Müller A, Glahn A, Skopp G, Sterneck M. Alcohol biomarkers in clinical and forensic contexts. Deutsches Ärzteblatt International; 2018. 115(18), 309.
  • Kültegin Ö, Defne T. Alkol ve Madde Kullanım Bozukluklarının Epidemiyolojisi. 3P Dergisi. 2003; 11(2): 123-128.
  • Chen L, Tang J, Song LN, Chen P, He J, Au CT et al. Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons. Applied Catalysis B: Environmental. 2019;242, 379-388.
  • Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology. 2020; 45(1), 141-165.
  • Palzes VA, Parthasarathy S, Chi FW, Kline‐Simon AH, Lu Y, Weisner C, et al. Associations between psychiatric disorders and alcohol consumption levels in an adult primary care population. Alcoholism: clinical and experimental research. 2020;44(12), 2536-2544.
  • Scafato E, Caputo F, Patussi V, Balbinot P, Addolorato G, Testino G. The undertreatment of alcohol-related liver diseases among people with alcohol use disorder. Eur Rev Med Pharmacol Sci. 2020; 24(2), 974-82.
  • Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR. Diagnosis and treatment of alcohol‐associated liver diseases: 2019 practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2020; 71(1), 306-33.
  • Sonde V, D’souza A, Tarapore R, Pereira L, Khare MP, Sinkar P, et al. Simultaneous administration of diethylphthalate and ethyl alcohol and its toxicity in male Sprague-Dawley rats. Toxicology. 2000; (147) : 23-31.
  • Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. Journal of hepatology. 2019;70(2), 294-304.
  • Sefarini M, Rio DD. Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool. Redox Report. 2004; 9(3). 145-152.
  • Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth defects research. 2019; 111(12), 714-748.
  • Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress—A Key Player in the Course of Alcohol-Related Liver Disease. Journal of clinical medicine. 2021; 10(14), 3011.
  • Żukowski, P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Archives of Oral Biology. 2018; 92, 8-17.
  • Engwa GA. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: Source of Antioxidants and Role in Disease Prevention. BoD–Books on Demand. 2018;7, 49-74.
  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity. 2019.
  • Morales M, Munné-Bosch S. Malondialdehyde: facts and artifacts. Plant physiology. 2019; 180(3), 1246-1250.
  • Lushchak VI, Lushchak O. Interplay between reactive oxygen and nitrogen species in living organisms. Chemico-Biological Interactions. 2021; 349, 109680.
  • Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biology and Medicine. 2020; 152, 175-185.
  • Alkadi H. A review on free radicals and antioxidants. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2020; 20(1), 16-26.
  • Yu M, Chen M, Gui J, Huang S, Liu Y, Shentu H, He J, Fang Z, Wang W, Zhang Y. (). Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. International journal of biological macromolecules. 2019; 137, 139-150.
  • Abdel-Karim OH, Gheda SF, Ismail GA, Abo-Shady AM. Phytochemical Screening and antioxidant activity of Chlorella vulgaris. Delta Journal of Science. 2020; 41(1), 81-91.
  • Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. International Journal of Molecular Sciences. 2020; 21(7), 2346.
  • Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry. 1966; 16(2), 359-364.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry. 1968; 25, 192-205.
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications. 1976; 71(4), 952-958.
  • Jacob A, Wang P. Alcohol intoxication and cognition: implications on mechanisms and therapeutic strategies. Frontiers in neuroscience. 2020; 14, 102.
  • Gao S, Shi J, Wang K, Tan Y, Hong H, Luo Y. Protective effects of oyster protein hydrolysates on alcohol-induced liver disease (ALD) in mice: based on the mechanism of anti-oxidative metabolism. Food & Function. 2022;16.
  • Wu C, Liu J, Tang Y, Li, Ya, Q, Jiang Z. Hepatoprotective potential of partially hydrolyzed guar gum against acute alcohol-induced liver injury in vitro and vivo. Nutrients. 2019; 11(5), 963.
  • Fontes-Júnior EA, Maia CSF, Fernandes LMP, Gomes-Leal W, Costa-Malaquias A, Lima RR et al. Chronic alcohol intoxication and cortical ischemia: study of their comorbidity and the protective effects of minocycline. Oxidative Med. Cell. Longev. 2016; 1341453.
  • Carrard VC, Pires AS, Mendez M, Mattos F, Moreira JCF, Sant’Ana Filho M. Effects of acute alcohol consumption and vitamin E co-treatment on oxidative stress parameters in rats tongue. Food and chemical toxicology. 2009; 47(6), 1058-1063.
  • Wu D, Cederbaum AI. Oxidative stress and alcoholic liver disease. In Seminars in liver disease 2009; 29(02),141-154.
  • Mallick N. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. Journal of Plant Physiology. 2004;161(5), 591-597.
  • Shim JY, Shin HS, Han JG, Park HS, Lim BL, Chung KW, et al. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats. Journal of Medicinal Food. 2008;11(3), 479-485.
  • Yun H, Kim I, Kwon SH, Kang JS, Om AS. Protective effect of Chlorella vulgaris against lead-induced oxidative stress in rat brains. Journal of Health Science. 2011; 57(3), 245-254.
  • Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life sciences. 2004; 74(19), 2339-2364.
  • Le Daré B, Lagente V, Gicquel T. Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug metabolism reviews. 2019;51(4), 545-561.
  • Matyas C, Haskó G, Liaudet L, Trojnar E, Pacher P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nature Reviews Cardiology. 2021; 18(2), 117-135
There are 39 citations in total.

Details

Primary Language English
Subjects Toxicology
Journal Section Original Articles
Authors

Tarık Mecit 0000-0002-3816-134X

Nadide Nabil Kamiloğlu 0000-0001-8645-7957

Publication Date December 31, 2022
Submission Date September 13, 2022
Published in Issue Year 2022

Cite

APA Mecit, T., & Kamiloğlu, N. N. (2022). Protective Effects of Chlorella Vulgaris in Alcohol Intoxication. Eurasian Journal of Toxicology, 4(3), 73-78. https://doi.org/10.51262/ejtox.1174600
AMA Mecit T, Kamiloğlu NN. Protective Effects of Chlorella Vulgaris in Alcohol Intoxication. Eurasian J Tox. December 2022;4(3):73-78. doi:10.51262/ejtox.1174600
Chicago Mecit, Tarık, and Nadide Nabil Kamiloğlu. “Protective Effects of Chlorella Vulgaris in Alcohol Intoxication”. Eurasian Journal of Toxicology 4, no. 3 (December 2022): 73-78. https://doi.org/10.51262/ejtox.1174600.
EndNote Mecit T, Kamiloğlu NN (December 1, 2022) Protective Effects of Chlorella Vulgaris in Alcohol Intoxication. Eurasian Journal of Toxicology 4 3 73–78.
IEEE T. Mecit and N. N. Kamiloğlu, “Protective Effects of Chlorella Vulgaris in Alcohol Intoxication”, Eurasian J Tox, vol. 4, no. 3, pp. 73–78, 2022, doi: 10.51262/ejtox.1174600.
ISNAD Mecit, Tarık - Kamiloğlu, Nadide Nabil. “Protective Effects of Chlorella Vulgaris in Alcohol Intoxication”. Eurasian Journal of Toxicology 4/3 (December 2022), 73-78. https://doi.org/10.51262/ejtox.1174600.
JAMA Mecit T, Kamiloğlu NN. Protective Effects of Chlorella Vulgaris in Alcohol Intoxication. Eurasian J Tox. 2022;4:73–78.
MLA Mecit, Tarık and Nadide Nabil Kamiloğlu. “Protective Effects of Chlorella Vulgaris in Alcohol Intoxication”. Eurasian Journal of Toxicology, vol. 4, no. 3, 2022, pp. 73-78, doi:10.51262/ejtox.1174600.
Vancouver Mecit T, Kamiloğlu NN. Protective Effects of Chlorella Vulgaris in Alcohol Intoxication. Eurasian J Tox. 2022;4(3):73-8.