Research Article
BibTex RIS Cite

Process Capability Analysis of Prediction Data of ML Algorithms

Year 2024, Volume: 6 Issue: 2, 208 - 220, 31.08.2024
https://doi.org/10.38009/ekimad.1519608

Abstract

This study integrates process capability analysis with Machine Learning (ML) methods to optimize business processes. ML, especially Random Forest (RF) and k-nearest neighbor (kNN) algorithms, has enabled the practical analysis of large data sets by using them together with process capability analysis. This integration enabled real-time monitoring and predictive analytics, enabling the proactive identification of process variations and the making of timely adjustments to maintain or increase process capability. Additionally, ML algorithms have helped optimize process parameters and identify critical factors affecting process performance, allowing for continuous improvement and achieving desired quality standards with greater efficiency. In conclusion, this study provides the basis for the synergy between process capability analysis and ML methods to enable businesses to achieve higher levels of quality control, productivity, and competitiveness in dynamic and complex production environments.

References

  • Abouelyazid, M. (2024). Reinforcement Learning-based Approaches for Improving Safety and Trust in Robot-to-Robot and Human-Robot Interaction. Advances in Urban Resilience and Sustainable City Design, 16(02), 18–29.
  • Atalan, A. (2020). Logistic Performance Index of OECD Members. Akademik Araştırmalar ve Çalışmalar Dergisi, 12(23), 608–619. https://doi.org/10.20990/kilisiibfakademik.720604
  • Atalan, A. (2022). Desirability Optimization Based on the Poisson Regression Model: Estimation of the Optimum Dental Workforce Planning. International Journal of Health Management and Tourism, 7(2), 200–216. https://doi.org/10.31201/ijhmt.1123824
  • Atalan, A. (2023). Integration of Discrete-Event Simulation and Statistical Process Control Methods. 1st International Conference on Pioneer and Innovative Studies, 1(1), 38–46.
  • Atalan, A., & Atalan, Y. A. (2022). Analysis of the Impact of Air Transportation on the Spread of the COVID-19 Pandemic. In G. Catenazzo (Ed.), Challenges and Opportunities for Transportation Services in the Post-COVID-19 Era (pp. 68–87). IGI Global. https://doi.org/10.4018/978-1-7998-8840-6.ch004
  • Atalan, A., Şahin, H., & Atalan, Y. A. (2022). Integration of Machine Learning Algorithms and Discrete-Event Simulation for the Cost of Healthcare Resources. Healthcare, 10(10), 1920. https://doi.org/10.3390/healthcare10101920
  • Atalan, Y. A., & Atalan, A. (2023). Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy. Sustainability, 15(18), 13782. https://doi.org/10.3390/su151813782
  • Ayaz Atalan, Y., & Atalan, A. (2020). A Statistical Analysis of the Relationship Between Meteorological Parameters and the Spread of COVID-19 Cases: Comparison Between Turkey and Italy. Journal of Statistics and Applied Sciences, 1(2), 76–84.
  • Ayaz Atalan, Y., Tayanç, M., Erkan, K., & Atalan, A. (2020). Development of Nonlinear Optimization Models for Wind Power Plants Using Box-Behnken Design of Experiment: A Case Study for Turkey. Sustainability, 12(15), 6017. https://doi.org/10.3390/su12156017
  • Bharadiya, J. P. (2023). The role of machine learning in transforming business intelligence. International Journal of Computing and Artificial Intelligence, 4(1), 16–24.
  • Campion, M. A., Fink, A. A., Ruggeberg, B. J., Carr, L., Phillips, G. M., & Odman, R. B. (2011). Doing competencies well: Best practices in competency modeling. Personnel Psychology, 64(1), 225–262.
  • Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 49, 86–97.
  • Chafai, N., Bonizzi, L., Botti, S., & Badaoui, B. (2024). Emerging applications of machine learning in genomic medicine and healthcare. Critical Reviews in Clinical Laboratory Sciences, 61(2), 140–163.
  • Chen, Y., Wang, Y., Nevo, S., Jin, J., Wang, L., & Chow, W. S. (2014). IT capability and organizational performance: the roles of business process agility and environmental factors. European Journal of Information Systems, 23(3), 326–342.
  • Ferro, M., Silva, G. D., de Paula, F. B., Vieira, V., & Schulze, B. (2023). Towards a sustainable artificial intelligence: A case study of energy efficiency in decision tree algorithms. Concurrency and Computation: Practice and Experience, 35(17), e6815.
  • Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2020). Achieving superior organizational performance via big data predictive analytics: A dynamic capability view. Industrial Marketing Management, 90, 581–592.
  • İnaç, H., Ayözen, Y. E., Atalan, A., & Dönmez, C. Ç. (2022). Estimation of Postal Service Delivery Time and Energy Cost with E-Scooter by Machine Learning Algorithms. Applied Sciences, 12(23), 12266. https://doi.org/10.3390/app122312266
  • Inyang, U. G., Ijebu, F. F., Osang, F. B., Afolorunso, A. A., Udoh, S. S., & Eyoh, I. J. (2023). A Dataset-Driven Parameter Tuning Approach for Enhanced K-Nearest Neighbour Algorithm Performance. International Journal on Advanced Science, Engineering & Information Technology, 13(1).
  • Kerpedzhiev, G. D., König, U. M., Röglinger, M., & Rosemann, M. (2021). An exploration into future business process management capabilities in view of digitalization: results from a Delphi study. Business & Information Systems Engineering, 63(2), 83–96.
  • Khan, N., Mohmand, M. I., Rehman, S. ur, Ullah, Z., Khan, Z., & Boulila, W. (2024). Advancements in intrusion detection: A lightweight hybrid RNN-RF model. Plos One, 19(6), e0299666.
  • Migdadi, M. M. (2022). Knowledge management processes, innovation capability and organizational performance. International Journal of Productivity and Performance Management, 71(1), 182–210.
  • Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2023). An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems.
  • Prasad, B. V. V. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. Preventive Medicine, 174, 107619.
  • Puspita, L. E., Christiananta, B., & Ellitan, L. (2020). The effect of strategic orientation, supply chain capability, innovation capability on competitive advantage and performance of furniture retails. International Journal of Scientific & Technology Research, 9(03), 4521–4529.
  • Ray, G., Barney, J. B., & Muhanna, W. A. (2004). Capabilities, business processes, and competitive advantage: choosing the dependent variable in empirical tests of the resource‐based view. Strategic Management Journal, 25(1), 23–37.
  • Reinartz, W., Krafft, M., & Hoyer, W. D. (2004). The customer relationship management process: Its measurement and impact on performance. Journal of Marketing Research, 41(3), 293–305.
  • Sabry, F. (2023). K Nearest Neighbor Algorithm: Fundamentals and Applications (Vol. 28). One Billion Knowledgeable.
  • Talukdar, W., & Biswas, A. (2024). Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling. ArXiv Preprint ArXiv:2406.01096.
  • Thakur, D., & Biswas, S. (2024). Permutation importance based modified guided regularized random forest in human activity recognition with smartphone. Engineering Applications of Artificial Intelligence, 129, 107681. https://doi.org/https://doi.org/10.1016/j.engappai.2023.107681
  • Ukey, N., Yang, Z., Li, B., Zhang, G., Hu, Y., & Zhang, W. (2023). Survey on exact knn queries over high-dimensional data space. Sensors, 23(2), 629.
  • Van Looy, A. (2020). Capabilities for managing business processes: a measurement instrument. Business Process Management Journal, 26(1), 287–311.
  • Zhang, C., Liu, Y., & Tie, N. (2023). Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron. Forests, 14(2), 254.

ML Algoritmalarının Tahmin Verilerine ait Süreç Yeteneği Analizi

Year 2024, Volume: 6 Issue: 2, 208 - 220, 31.08.2024
https://doi.org/10.38009/ekimad.1519608

Abstract

Bu çalışma, iş süreçlerini optimize etmek için process yetenek analizini Makine Öğrenimi (ML) yöntemleriyle entegre etmekteyi amaçlamıştır. ML, özellikle Rastgele Orman (RF) ve k-en yakın komşu (kNN) algoritmaları, süreç yetenek analizi ile birlikte kullanılarak büyük veri setlerinin pratik analizine olanak sağlamıştır. Bu entegrasyon, gerçek zamanlı izleme ve tahmine dayalı analitiği mümkün kılarak süreç değişimlerinin proaktif olarak belirlenmesine ve süreç yeterliliğini korumak veya artırmak için zamanında ayarlamalar yapılmasına olanak sağladı. Ek olarak, ML algoritmaları süreç parametrelerinin optimize edilmesine ve süreç performansını etkileyen kritik faktörlerin belirlenmesine yardımcı olarak sürekli iyileştirmeye ve istenen kalite standartlarına daha yüksek verimlilikle ulaşılmasına olanak tanıdı. Sonuç olarak bu çalışma, işletmelerin dinamik ve karmaşık üretim ortamlarında daha yüksek düzeyde kalite kontrol, üretkenlik ve rekabet gücü elde etmelerini sağlamak için süreç yetenek analizi ile ML yöntemleri arasındaki sinerjinin temelini oluşturmaktadır.

References

  • Abouelyazid, M. (2024). Reinforcement Learning-based Approaches for Improving Safety and Trust in Robot-to-Robot and Human-Robot Interaction. Advances in Urban Resilience and Sustainable City Design, 16(02), 18–29.
  • Atalan, A. (2020). Logistic Performance Index of OECD Members. Akademik Araştırmalar ve Çalışmalar Dergisi, 12(23), 608–619. https://doi.org/10.20990/kilisiibfakademik.720604
  • Atalan, A. (2022). Desirability Optimization Based on the Poisson Regression Model: Estimation of the Optimum Dental Workforce Planning. International Journal of Health Management and Tourism, 7(2), 200–216. https://doi.org/10.31201/ijhmt.1123824
  • Atalan, A. (2023). Integration of Discrete-Event Simulation and Statistical Process Control Methods. 1st International Conference on Pioneer and Innovative Studies, 1(1), 38–46.
  • Atalan, A., & Atalan, Y. A. (2022). Analysis of the Impact of Air Transportation on the Spread of the COVID-19 Pandemic. In G. Catenazzo (Ed.), Challenges and Opportunities for Transportation Services in the Post-COVID-19 Era (pp. 68–87). IGI Global. https://doi.org/10.4018/978-1-7998-8840-6.ch004
  • Atalan, A., Şahin, H., & Atalan, Y. A. (2022). Integration of Machine Learning Algorithms and Discrete-Event Simulation for the Cost of Healthcare Resources. Healthcare, 10(10), 1920. https://doi.org/10.3390/healthcare10101920
  • Atalan, Y. A., & Atalan, A. (2023). Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy. Sustainability, 15(18), 13782. https://doi.org/10.3390/su151813782
  • Ayaz Atalan, Y., & Atalan, A. (2020). A Statistical Analysis of the Relationship Between Meteorological Parameters and the Spread of COVID-19 Cases: Comparison Between Turkey and Italy. Journal of Statistics and Applied Sciences, 1(2), 76–84.
  • Ayaz Atalan, Y., Tayanç, M., Erkan, K., & Atalan, A. (2020). Development of Nonlinear Optimization Models for Wind Power Plants Using Box-Behnken Design of Experiment: A Case Study for Turkey. Sustainability, 12(15), 6017. https://doi.org/10.3390/su12156017
  • Bharadiya, J. P. (2023). The role of machine learning in transforming business intelligence. International Journal of Computing and Artificial Intelligence, 4(1), 16–24.
  • Campion, M. A., Fink, A. A., Ruggeberg, B. J., Carr, L., Phillips, G. M., & Odman, R. B. (2011). Doing competencies well: Best practices in competency modeling. Personnel Psychology, 64(1), 225–262.
  • Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 49, 86–97.
  • Chafai, N., Bonizzi, L., Botti, S., & Badaoui, B. (2024). Emerging applications of machine learning in genomic medicine and healthcare. Critical Reviews in Clinical Laboratory Sciences, 61(2), 140–163.
  • Chen, Y., Wang, Y., Nevo, S., Jin, J., Wang, L., & Chow, W. S. (2014). IT capability and organizational performance: the roles of business process agility and environmental factors. European Journal of Information Systems, 23(3), 326–342.
  • Ferro, M., Silva, G. D., de Paula, F. B., Vieira, V., & Schulze, B. (2023). Towards a sustainable artificial intelligence: A case study of energy efficiency in decision tree algorithms. Concurrency and Computation: Practice and Experience, 35(17), e6815.
  • Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2020). Achieving superior organizational performance via big data predictive analytics: A dynamic capability view. Industrial Marketing Management, 90, 581–592.
  • İnaç, H., Ayözen, Y. E., Atalan, A., & Dönmez, C. Ç. (2022). Estimation of Postal Service Delivery Time and Energy Cost with E-Scooter by Machine Learning Algorithms. Applied Sciences, 12(23), 12266. https://doi.org/10.3390/app122312266
  • Inyang, U. G., Ijebu, F. F., Osang, F. B., Afolorunso, A. A., Udoh, S. S., & Eyoh, I. J. (2023). A Dataset-Driven Parameter Tuning Approach for Enhanced K-Nearest Neighbour Algorithm Performance. International Journal on Advanced Science, Engineering & Information Technology, 13(1).
  • Kerpedzhiev, G. D., König, U. M., Röglinger, M., & Rosemann, M. (2021). An exploration into future business process management capabilities in view of digitalization: results from a Delphi study. Business & Information Systems Engineering, 63(2), 83–96.
  • Khan, N., Mohmand, M. I., Rehman, S. ur, Ullah, Z., Khan, Z., & Boulila, W. (2024). Advancements in intrusion detection: A lightweight hybrid RNN-RF model. Plos One, 19(6), e0299666.
  • Migdadi, M. M. (2022). Knowledge management processes, innovation capability and organizational performance. International Journal of Productivity and Performance Management, 71(1), 182–210.
  • Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2023). An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems.
  • Prasad, B. V. V. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. Preventive Medicine, 174, 107619.
  • Puspita, L. E., Christiananta, B., & Ellitan, L. (2020). The effect of strategic orientation, supply chain capability, innovation capability on competitive advantage and performance of furniture retails. International Journal of Scientific & Technology Research, 9(03), 4521–4529.
  • Ray, G., Barney, J. B., & Muhanna, W. A. (2004). Capabilities, business processes, and competitive advantage: choosing the dependent variable in empirical tests of the resource‐based view. Strategic Management Journal, 25(1), 23–37.
  • Reinartz, W., Krafft, M., & Hoyer, W. D. (2004). The customer relationship management process: Its measurement and impact on performance. Journal of Marketing Research, 41(3), 293–305.
  • Sabry, F. (2023). K Nearest Neighbor Algorithm: Fundamentals and Applications (Vol. 28). One Billion Knowledgeable.
  • Talukdar, W., & Biswas, A. (2024). Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling. ArXiv Preprint ArXiv:2406.01096.
  • Thakur, D., & Biswas, S. (2024). Permutation importance based modified guided regularized random forest in human activity recognition with smartphone. Engineering Applications of Artificial Intelligence, 129, 107681. https://doi.org/https://doi.org/10.1016/j.engappai.2023.107681
  • Ukey, N., Yang, Z., Li, B., Zhang, G., Hu, Y., & Zhang, W. (2023). Survey on exact knn queries over high-dimensional data space. Sensors, 23(2), 629.
  • Van Looy, A. (2020). Capabilities for managing business processes: a measurement instrument. Business Process Management Journal, 26(1), 287–311.
  • Zhang, C., Liu, Y., & Tie, N. (2023). Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron. Forests, 14(2), 254.
There are 32 citations in total.

Details

Primary Language English
Subjects Econometric and Statistical Methods
Journal Section Articles
Authors

Tuğçe Altuntaş 0009-0007-3629-2454

Abdulkadir Atalan 0000-0003-0924-3685

Publication Date August 31, 2024
Submission Date July 20, 2024
Acceptance Date August 23, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Altuntaş, T., & Atalan, A. (2024). Process Capability Analysis of Prediction Data of ML Algorithms. Ekonomi İşletme Ve Maliye Araştırmaları Dergisi, 6(2), 208-220. https://doi.org/10.38009/ekimad.1519608