Research Article
BibTex RIS Cite

Görünmeyeni Ölçmek: COVID-19 için Epidemiyolojik Eksik Tahminleme Sorunu

Year 2025, Volume: 14 Issue: 1, 35 - 67, 12.03.2025

Abstract

Güvenilir epidemiyolojik veriler, pandemiyle ilişkili politikaların kamu sağlığı önlemleri ve ekonomik etkiler açısından anlamlı bir şekilde analiz edilebilmesi için zorunlu bir ön koşuldur. Türkiye’de hükümet, ilk hareket kısıtlamalarının Haziran 2020’de gevşetilmesinden sonraki aylar boyunca, teyit edilen tüm COVID-19 vakalarının sayısını açıklamamış ve bu durum, bu politikaların ekonomik ve sağlık ödünleşmelerinin değerlendirilmesini ciddi şekilde zorlaştırmıştır. Bu makale, aşırı veri sınırlılıkları altında bile epidemiyolojik eksik tahminlemeyi tespit edebilen ve nicel olarak değerlendirebilen bir sistem dinamiği yaklaşımı geliştirmektedir. Simülasyon algoritmamız, virüse maruz kalan fakat henüz bulaştırıcı olmayan bireyleri açıkça dikkate alan bir doğrusal olmayan dinamik model üzerinde inşa edilmekte ve sadece birkaç güvenilir veri noktasına sahip olunmasını gerektirmektedir. Bulgular, resmî ve tahmin ettiğimiz sayılar arasında büyük farklılaşmalara işaret etmekte, karşıolgusal deneyler sosyal mesafe politikalarının yeterince iyi biçimde ve yeterince uzun süre uygulandığında COVID-19’un kontrol altında tutulması için oldukça etkili olabileceğini göstermektedir.

References

  • Adıgüzel, F. S., Cansunar, A., & Çörekçioğlu, G. (2020). Truth or dare? detecting systematic manipulation of covid-19 statistics. Journal of Political Institutions and Political Economy, 1(4), 543-557.
  • Apple. (2021). Mobility trends reports. https://www.apple.com/covid19/mobility.
  • Attar, M. A., & Tekin-Koru, A. (2022). Latent social distancing: Identification, causes and consequences. Economic Systems, 46(1), 100944.
  • Avery, C., Bossert, W., Clark, A. T., Ellison, G., & Ellison, S. F. (2020). Policy implications of models of the spread of coronavirus: Perspectives and opportunities for economists. Covid Economics: Vetted and Real-Time Papers, 1(12).
  • Balashov, V. S., Yan, Y., & Zhu, X. (2020). Are less developed countries more likely to manipulate data during pandemics? evidence from newcomb-benford law. https://ideas.repec.org/p/arx/ papers/2007.14841.html.
  • Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78(4), 551-572.
  • Çakmaklı, C., Demiralp, S., Özcan, Ş. K., Yeşiltaş, S., & Yıldırım, M. A. (2023). COVID-19 and emerging markets: A SIR model, demand shocks and capital flows. Journal of International Economics, 145, 103825.
  • Çakmaklı, C., & Şimşek, Y. (2021). Bridging the covid-19 data and the epidemiological model using time-varying parameter sird model. Koç University-TÜSİAD ERF Working Paper, https://eaf. ku.edu.tr/wp-content/uploads/2021/02/erfwp 2013.pdf.
  • Chudik, A., Pesaran, M. H., & Rebucci, A. (2021). Covid-19 time-varying reproduction numbers worldwide: An empirical analysis of mandatory and voluntary social distancing (Tech. Rep.). National Bureau of Economic Research.
  • Degue, K. H., & Le Ny, J. (2018). An interval observer for discrete-time seir epidemic models. In 2018 annual american control conference (acc) (p. 5934-5939).
  • Dougherty, B. P., Smith, B. A., Carson, C. A., & Ogden, N. H. (2021). Exploring the percentage of covid-19 cases reported in the community in canada and associated case fatality ratios. Infectious Disease Modelling, 6, 123-132. Retrieved from https://www.sciencedirect.com/science/ article/pii/S2468042720301044
  • Fernàndez-Villaverde, J., & Jones, C. I. (2020). Estimating and simulating a sird model of covid-19 for many countries, states, and cities (Tech. Rep.). National Bureau of Economic Research.
  • Ghaffarzadegan, N., & Rahmandad, H. (2020). Simulation-based estimation of the early spread of covid-19 in iran: actual versus confirmed cases. System Dynamics Review, 36(1), 101-129.
  • Gibbons, C., Mangen, M., Plass, D., Havelaar, A., Brooke, R., Kramarz, P., ... Kretzschmar, M. (2014). Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC Public Health, 14(1), 147–164. Retrieved from https://doi.org/10.1038/s41591-020-0883-7
  • Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Filippo, A. D., Matteo, A. D., & Colaneri, M. (2020). Modelling the covid-19 epidemic and implementation of population-wide interventions in italy. Nature Medicine, 26, 855–860. Retrieved from https://doi.org/10.1038/s41591-0200883-7
  • Google. (2021). Covid-19 community mobility results. https://www.google.com/covid19/ mobility/. He, S., Tang, S., & Rong, L. (2020). A discrete stochastic model of the covid-19 outbreak: Forecast and control. Mathematical Biosciences and Engineering, 17(4), 2792-2804.
  • Hellwig, C., Assenza, T., Collard, F., Dupaigne, M., Feve, P., Kankanamge, S., & Werquin, N. (2022). The Hammer and the Dance: Equilibrium and Optimal Policy during a Pandemic Crisis. HAL Working Paper.
  • Isea, R. (2020, 06). How valid are the reported cases of people infected with covid-19 in the world? International Journal of Coronaviruses, 1, 53.
  • JHU. (2021). Covid-19 data repository. https://github.com/CSSEGISandData/COVID-19.
  • Kaplan, G., Moll, B., & Violante, G. L. (2020). The great lockdown and the big stimulus: Tracing the pandemic possibility frontier for the US (No. w27794). National Bureau of Economic Research.
  • Kapoor, M., Malani, A., Ravi, S., & Agrawal, A. (2020). Authoritarian governments appear to manipulate covid data. Working Paper, https://arxiv.org/pdf/2007.09566.
  • Karlinsky, A., & Kobak, D. (2021). The world mortality dataset: Tracking excess mortality across countries during the covid-19 pandemic. medRxiv. Retrieved from https://www.medrxiv.org/ content/early/2021/04/11/2021.01.27.21250604
  • Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721.
  • Korolev, I. (2021). Identification and estimation of the seird epidemic model for covid-19. Journal of Econometrics, 220(1), 63-85.
  • Krantz, S. G., & Srinivasa Rao, A. S. R. (2020). Level of underreporting including underdiagnosis before the first peak of covid-19 in various countries: Preliminary retrospective results based on wavelets and deterministic modeling. Infection Control & Hospital Epidemiology, 41(7), 857-859.
  • Kung, S., Doppen, M., Black, M., Braithwaite, I., Kearns, C., Weatherall, M., ... Kearns, N. (2021). Underestimation of covid-19 mortality during the pandemic. ERJ Open Research, 7, 1-7.
  • Maharaj, S., & Kleczkowski, A. (2012). Controlling epidemic spread by social distancing: Do it well or not at all. BMC Public Health, 12(679), 1-16. Retrieved from https://doi.org/10.1186/1471-2458-12-679
  • Millimet, D. L., & Parmeter, C. F. (2022). Covid-19 severity: A new approach to quantifying global cases and deaths. Journal of the Royal Statistical Society: Series A (Statistics in Society), 185(3), 1178–1215.
  • Noufaily, A. (2019). Underreporting and reporting delays. In L. Held, N. Hens, P. O’Neill, & J. Wallinga (Eds.), Handbook of infectious disease data analysis (pp. 437–454). London: Chapman and Hall/CRC.
  • Rahmandad, H., Lim, T. Y., & Sterman, J. (2021). Behavioral dynamics of covid-19: estimating underreporting, multiple waves, and adherence fatigue across 92 nations. System Dynamics Review, 37(1), 5-31.
  • Sawano, T., Kotera, Y., Ozaki, A., Murayama, A., Tanimoto, T., Sah, R., & Wang, J. (2020, 06). Underestimation of covid-19 cases in japan: an analysis of rt-pcr testing for covid-19 among 47 prefectures in japan. QJM: An International Journal of Medicine, 113(8), 551-555. Retrieved from https://doi.org/10.1093/qjmed/hcaa209
  • Siedner, M. J., Harling, G., Reynolds, Z., Gilbert, R. F., Haneuse, S., Venkataramani, A. S., & Tsai, A. C. (2020, 08). Social distancing to slow the us covid-19 epidemic: Longitudinal pretest-posttest comparison group study. PLOS Medicine, 17(8), 1-12. Retrieved from https://doi.org/10.1371/ journal.pmed.1003244
  • Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions. Journal of Clinical Medicine, 9(2)(462), 1-13.
  • Uçar, A., Arslan, S¸., & Balcı Yapalak, A. N. (2020, November 23). Türkiye covid-19 pandemisinde resmi ve tahmini sayılar [sunum]. Bilim Akademisi COVID-19 Modelleme Çalıştayı, https://bilimakademisi.org/wp-content/uploads/2020/12/abdullah-ucar-sunum.pdf.
  • UNPF. (2021). World population dashboard. https://www.unfpa.org/data/world-populationdashboard.
  • Vandoros, S. (2020). Excess mortality during the covid-19 pandemic: Early evidence from england and wales. Social Science & Medicine, 258, 113101. Retrieved from https://www.sciencedirect.com/science/article/pii/S0277953620303208
  • Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., ... Ferguson, N. M. (2020). Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet Infectious Diseases, 20, 669-677.
  • Wu, S. L., Mertens, A. N., Crider, Y. S., Nguyen, A., Pokpongkiat, N. N., Djajadi, S., ... Benjamin-Chung, J. (2020). Substantial underestimation of sars-cov-2 infection in the United States. Nature Communications, 11(4507), 1-10. Retrieved from https://doi.org/10.1038/s41467-020-182724

Quantifying the Unseen: Epidemiological Underestimation Problem for COVID-19

Year 2025, Volume: 14 Issue: 1, 35 - 67, 12.03.2025

Abstract

Reliable epidemiological data is a prerequisite for meaningful economic analysis of pandemic-related policies, as it provides the foundation for evaluating public health measures and their economic impacts. In Türkiye, the government did not disclose the number of all confirmed COVID-19 cases for several months after the relaxation of initial mobility restrictions in June 2020, creating significant challenges for assessing the economic and health tradeoffs of these policies. This paper addresses this issue by developing a system dynamics approach that can identify and quantify epidemiological underestimation under extreme data limitations. Our simulation algorithm builds on a nonlinear dynamical model that explicitly accounts for individuals that are exposed but not yet infectious and requires only a few reliable data points. Results imply large deviations between official and estimated figures, and counterfactual experiments show that social distancing, if practiced well and long enough, would have been highly effective for the containment of COVID-19.

References

  • Adıgüzel, F. S., Cansunar, A., & Çörekçioğlu, G. (2020). Truth or dare? detecting systematic manipulation of covid-19 statistics. Journal of Political Institutions and Political Economy, 1(4), 543-557.
  • Apple. (2021). Mobility trends reports. https://www.apple.com/covid19/mobility.
  • Attar, M. A., & Tekin-Koru, A. (2022). Latent social distancing: Identification, causes and consequences. Economic Systems, 46(1), 100944.
  • Avery, C., Bossert, W., Clark, A. T., Ellison, G., & Ellison, S. F. (2020). Policy implications of models of the spread of coronavirus: Perspectives and opportunities for economists. Covid Economics: Vetted and Real-Time Papers, 1(12).
  • Balashov, V. S., Yan, Y., & Zhu, X. (2020). Are less developed countries more likely to manipulate data during pandemics? evidence from newcomb-benford law. https://ideas.repec.org/p/arx/ papers/2007.14841.html.
  • Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78(4), 551-572.
  • Çakmaklı, C., Demiralp, S., Özcan, Ş. K., Yeşiltaş, S., & Yıldırım, M. A. (2023). COVID-19 and emerging markets: A SIR model, demand shocks and capital flows. Journal of International Economics, 145, 103825.
  • Çakmaklı, C., & Şimşek, Y. (2021). Bridging the covid-19 data and the epidemiological model using time-varying parameter sird model. Koç University-TÜSİAD ERF Working Paper, https://eaf. ku.edu.tr/wp-content/uploads/2021/02/erfwp 2013.pdf.
  • Chudik, A., Pesaran, M. H., & Rebucci, A. (2021). Covid-19 time-varying reproduction numbers worldwide: An empirical analysis of mandatory and voluntary social distancing (Tech. Rep.). National Bureau of Economic Research.
  • Degue, K. H., & Le Ny, J. (2018). An interval observer for discrete-time seir epidemic models. In 2018 annual american control conference (acc) (p. 5934-5939).
  • Dougherty, B. P., Smith, B. A., Carson, C. A., & Ogden, N. H. (2021). Exploring the percentage of covid-19 cases reported in the community in canada and associated case fatality ratios. Infectious Disease Modelling, 6, 123-132. Retrieved from https://www.sciencedirect.com/science/ article/pii/S2468042720301044
  • Fernàndez-Villaverde, J., & Jones, C. I. (2020). Estimating and simulating a sird model of covid-19 for many countries, states, and cities (Tech. Rep.). National Bureau of Economic Research.
  • Ghaffarzadegan, N., & Rahmandad, H. (2020). Simulation-based estimation of the early spread of covid-19 in iran: actual versus confirmed cases. System Dynamics Review, 36(1), 101-129.
  • Gibbons, C., Mangen, M., Plass, D., Havelaar, A., Brooke, R., Kramarz, P., ... Kretzschmar, M. (2014). Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC Public Health, 14(1), 147–164. Retrieved from https://doi.org/10.1038/s41591-020-0883-7
  • Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Filippo, A. D., Matteo, A. D., & Colaneri, M. (2020). Modelling the covid-19 epidemic and implementation of population-wide interventions in italy. Nature Medicine, 26, 855–860. Retrieved from https://doi.org/10.1038/s41591-0200883-7
  • Google. (2021). Covid-19 community mobility results. https://www.google.com/covid19/ mobility/. He, S., Tang, S., & Rong, L. (2020). A discrete stochastic model of the covid-19 outbreak: Forecast and control. Mathematical Biosciences and Engineering, 17(4), 2792-2804.
  • Hellwig, C., Assenza, T., Collard, F., Dupaigne, M., Feve, P., Kankanamge, S., & Werquin, N. (2022). The Hammer and the Dance: Equilibrium and Optimal Policy during a Pandemic Crisis. HAL Working Paper.
  • Isea, R. (2020, 06). How valid are the reported cases of people infected with covid-19 in the world? International Journal of Coronaviruses, 1, 53.
  • JHU. (2021). Covid-19 data repository. https://github.com/CSSEGISandData/COVID-19.
  • Kaplan, G., Moll, B., & Violante, G. L. (2020). The great lockdown and the big stimulus: Tracing the pandemic possibility frontier for the US (No. w27794). National Bureau of Economic Research.
  • Kapoor, M., Malani, A., Ravi, S., & Agrawal, A. (2020). Authoritarian governments appear to manipulate covid data. Working Paper, https://arxiv.org/pdf/2007.09566.
  • Karlinsky, A., & Kobak, D. (2021). The world mortality dataset: Tracking excess mortality across countries during the covid-19 pandemic. medRxiv. Retrieved from https://www.medrxiv.org/ content/early/2021/04/11/2021.01.27.21250604
  • Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721.
  • Korolev, I. (2021). Identification and estimation of the seird epidemic model for covid-19. Journal of Econometrics, 220(1), 63-85.
  • Krantz, S. G., & Srinivasa Rao, A. S. R. (2020). Level of underreporting including underdiagnosis before the first peak of covid-19 in various countries: Preliminary retrospective results based on wavelets and deterministic modeling. Infection Control & Hospital Epidemiology, 41(7), 857-859.
  • Kung, S., Doppen, M., Black, M., Braithwaite, I., Kearns, C., Weatherall, M., ... Kearns, N. (2021). Underestimation of covid-19 mortality during the pandemic. ERJ Open Research, 7, 1-7.
  • Maharaj, S., & Kleczkowski, A. (2012). Controlling epidemic spread by social distancing: Do it well or not at all. BMC Public Health, 12(679), 1-16. Retrieved from https://doi.org/10.1186/1471-2458-12-679
  • Millimet, D. L., & Parmeter, C. F. (2022). Covid-19 severity: A new approach to quantifying global cases and deaths. Journal of the Royal Statistical Society: Series A (Statistics in Society), 185(3), 1178–1215.
  • Noufaily, A. (2019). Underreporting and reporting delays. In L. Held, N. Hens, P. O’Neill, & J. Wallinga (Eds.), Handbook of infectious disease data analysis (pp. 437–454). London: Chapman and Hall/CRC.
  • Rahmandad, H., Lim, T. Y., & Sterman, J. (2021). Behavioral dynamics of covid-19: estimating underreporting, multiple waves, and adherence fatigue across 92 nations. System Dynamics Review, 37(1), 5-31.
  • Sawano, T., Kotera, Y., Ozaki, A., Murayama, A., Tanimoto, T., Sah, R., & Wang, J. (2020, 06). Underestimation of covid-19 cases in japan: an analysis of rt-pcr testing for covid-19 among 47 prefectures in japan. QJM: An International Journal of Medicine, 113(8), 551-555. Retrieved from https://doi.org/10.1093/qjmed/hcaa209
  • Siedner, M. J., Harling, G., Reynolds, Z., Gilbert, R. F., Haneuse, S., Venkataramani, A. S., & Tsai, A. C. (2020, 08). Social distancing to slow the us covid-19 epidemic: Longitudinal pretest-posttest comparison group study. PLOS Medicine, 17(8), 1-12. Retrieved from https://doi.org/10.1371/ journal.pmed.1003244
  • Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions. Journal of Clinical Medicine, 9(2)(462), 1-13.
  • Uçar, A., Arslan, S¸., & Balcı Yapalak, A. N. (2020, November 23). Türkiye covid-19 pandemisinde resmi ve tahmini sayılar [sunum]. Bilim Akademisi COVID-19 Modelleme Çalıştayı, https://bilimakademisi.org/wp-content/uploads/2020/12/abdullah-ucar-sunum.pdf.
  • UNPF. (2021). World population dashboard. https://www.unfpa.org/data/world-populationdashboard.
  • Vandoros, S. (2020). Excess mortality during the covid-19 pandemic: Early evidence from england and wales. Social Science & Medicine, 258, 113101. Retrieved from https://www.sciencedirect.com/science/article/pii/S0277953620303208
  • Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., ... Ferguson, N. M. (2020). Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet Infectious Diseases, 20, 669-677.
  • Wu, S. L., Mertens, A. N., Crider, Y. S., Nguyen, A., Pokpongkiat, N. N., Djajadi, S., ... Benjamin-Chung, J. (2020). Substantial underestimation of sars-cov-2 infection in the United States. Nature Communications, 11(4507), 1-10. Retrieved from https://doi.org/10.1038/s41467-020-182724
There are 38 citations in total.

Details

Primary Language English
Subjects Economic Models and Forecasting, Econometrics (Other)
Journal Section Research Articles
Authors

M. Aykut Attar 0000-0003-0142-713X

Ayça Tekin Koru 0000-0002-0817-9055

Publication Date March 12, 2025
Submission Date November 27, 2024
Acceptance Date February 11, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Attar, M. A., & Tekin Koru, A. (2025). Quantifying the Unseen: Epidemiological Underestimation Problem for COVID-19. Ekonomi-Tek, 14(1), 35-67.