Research Article
BibTex RIS Cite

TÜRKİYE’DEKİ KAVRAM YANILGILARI İLE İLGİLİ ARAŞTIRMALARIN KAVRAMIN İÇERİK ÖGELERİ AÇISINDAN İNCELENMESİ

Year 2017, Volume: 13 Issue: 1, 111 - 143, 31.01.2017

Abstract

Bu çalışmanın amacı, Türkiye’deki kavram yanılgıları
ile ilgili çalışmaların tartışma, sonuç ve öneriler bölümünün kavramın içerik
ögeleri açısından incelenmesidir. Araştırmada, betimsel tarama modeli yöntemi
kullanılmıştır. Verilerin toplanması ve veri analizinde nitel araştırma
tekniklerinden yararlanılmıştır. Araştırmada kavram yanılgıları ile ilgili fen
eğitimi, matematik eğitimi ve sosyal bilgiler eğitimi alanından ölçüt örnekleme
yöntemine göre seçilen toplam 241 çalışma incelenmiştir. Doküman analizi
tekniği ile toplanan veriler, içerik analizi tekniği kullanılarak
çözümlenmiştir. Bu araştırma sonucunda, araştırmacıların araştırmalarında
ulaştıkları sonuçları ve önerilerini ortaya koyarken, kavramın içerik ögelerine
çok az yer verdikleri görülmüştür. Araştırma raporlarında kavramın içerik
ögelerine yer vermiş olan araştırmacıların ise en çok tanım, özellikler ve
örneklerle ilgili belirlemeler yaptıkları ve en çok örneklerle ilgili önerileri
ifade ettikleri saptanmıştır. Araştırmacıların en az üzerinde durdukları öge
ise kavram adı ve kavram hiyerarşisi olmuştur. Araştırmalarda ortaya konulan
sonuçların kavram öğretimi ile ilgili üretilen kuramsal bilgilerle
desteklenmeden tartışıldığı ve yapılan önerilerin kavramın içerik ögelerinin
etkili öğretiminden çok farklı yöntem, teknik ve materyallerin kullanılması
üzerinde yoğunlaştığı saptanmıştır. Sonuç olarak, kavram yanılgıları ile ilgili
araştırma sonuçlarından ve önerilerinden kavram öğretimi ile ilgilenen
tasarımcıların, öğretmenlerin, ders kitabı yazarlarının ve program geliştirme
uzmanlarının yararlanabilmesi amacıyla, ilgili konu alanı uzmanlarının,
araştırmalarında incelenen kavramın analizini yaparak kavramın içerik ögelerine
daha açık yer vermeleri önerilebilir.

References

  • Akbulut Taş, M., & Karataş Coşkun, M. (2014). The effect of explicit teaching and implicit learning of concept and generalization structure on the acquisition of explicit knowledge of concept and generalization structure. Çukurova University Faculty of Education Journal, 43(1), 19-38. doi: 10.14812/cufej.2014.001.
  • Anderson, R. C., & Kulhavy, R.W. (1972). Learning concepts from definitions. American Educational Research Journal, 9(3), 385-390. URL: http://www.jstor.org/stable/1161754.
  • Bahar, M. (2003). Misconceptions in biology education and conceptual change strategies. Educational Sciences: Theory & Practice, 3(1) , 55-64.
  • Barke, H.D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin, Heidelberg: Springer.doi 10.1007/978-3-540-70989-3_1.
  • Booth, J.L., Lange, K.E., Koedinger, K. R., Newton, K.J. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction, 25, 24-34.
  • Brown, D. E., & Clement, J. (April, 1987). Overcoming misconceptions in mechanics: A comparison of two example-based teaching strategies. A Paper presented of the American Educational Research Association, Washington, D.C. ED 283 712.
  • Bulunuz, N., Jarrett, O. S., & Bulunuz, M. (2008). Fifth-grade elementary school students’ conceptions and misconceptions about the fungus kingdom. Journal of Turkish science, 5(3), 32-46.
  • Canpolat, N. (2006). Turkish undergraduates' misconceptions of evaporation, evaporation rate, and vapour pressure. International Journal of Science Education, 28(15), 1757-1770.
  • Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14(2), 161-199.

AN ANALYSIS OF THE STUDIES ON MISCONCEPTIONS IN TURKEY IN TERMS OF THE CONCEPT COMPONENTS

Year 2017, Volume: 13 Issue: 1, 111 - 143, 31.01.2017

Abstract

The purpose of
this study is to analyze discussion, conclusion and recommendations sections of
the misconception studies conducted in Turkey in terms of the components of the
concept. This study utilized descriptive survey model. It involved 241 studies on
misconceptions in the domain of science education, mathematics education, and
social studies education; the sample was chosen using criterion sampling
method. The data, collected through document analysis technique, were analyzed
using content analysis method. Results of the present study show that while
presenting the results and recommendations of their studies, researchers gave
little space to the components of the concepts in their study. As to the
researchers who included components of the concepts in their study reports,
they were found to make identifications mostly about the definition, attributes
and examples; and they explained mostly recommendations about examples. The
component which was emphasized least by the researchers was concept name and concept
hierarchy. In addition, it was found that the results were discussed without
providing the theoretical knowledge about concept teaching; the recommendations
focused more on the use of techniques and materials rather than the effective
teaching of the components of the concept. Given the results and
recommendations of the studies on misconceptions, it could be recommended that
experts on the related domain should analyze the concepts in their study and
give more place to components of the concept more explicitly. This way,
designers who are interested in concept instruction, teachers, course book
authors, and program development experts could benefit from this knowledge.

References

  • Akbulut Taş, M., & Karataş Coşkun, M. (2014). The effect of explicit teaching and implicit learning of concept and generalization structure on the acquisition of explicit knowledge of concept and generalization structure. Çukurova University Faculty of Education Journal, 43(1), 19-38. doi: 10.14812/cufej.2014.001.
  • Anderson, R. C., & Kulhavy, R.W. (1972). Learning concepts from definitions. American Educational Research Journal, 9(3), 385-390. URL: http://www.jstor.org/stable/1161754.
  • Bahar, M. (2003). Misconceptions in biology education and conceptual change strategies. Educational Sciences: Theory & Practice, 3(1) , 55-64.
  • Barke, H.D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin, Heidelberg: Springer.doi 10.1007/978-3-540-70989-3_1.
  • Booth, J.L., Lange, K.E., Koedinger, K. R., Newton, K.J. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction, 25, 24-34.
  • Brown, D. E., & Clement, J. (April, 1987). Overcoming misconceptions in mechanics: A comparison of two example-based teaching strategies. A Paper presented of the American Educational Research Association, Washington, D.C. ED 283 712.
  • Bulunuz, N., Jarrett, O. S., & Bulunuz, M. (2008). Fifth-grade elementary school students’ conceptions and misconceptions about the fungus kingdom. Journal of Turkish science, 5(3), 32-46.
  • Canpolat, N. (2006). Turkish undergraduates' misconceptions of evaporation, evaporation rate, and vapour pressure. International Journal of Science Education, 28(15), 1757-1770.
  • Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14(2), 161-199.
There are 9 citations in total.

Details

Journal Section Makaleler
Authors

Mükerrem Akbulut Taş

Publication Date January 31, 2017
Submission Date February 11, 2017
Published in Issue Year 2017 Volume: 13 Issue: 1

Cite

APA Akbulut Taş, M. (2017). TÜRKİYE’DEKİ KAVRAM YANILGILARI İLE İLGİLİ ARAŞTIRMALARIN KAVRAMIN İÇERİK ÖGELERİ AÇISINDAN İNCELENMESİ. Eğitimde Kuram Ve Uygulama, 13(1), 111-143. https://doi.org/10.17244/http-eku-comu-edu-tr.291331