Research Article
BibTex RIS Cite

Orbital Eccentricity Study of Planets: A Comparative Analysis of Manual Simulation and Digital Visualization

Year 2025, Volume: 21 Issue: 2, 129 - 141
https://doi.org/10.17244/eku.1595205

Abstract

Understanding planetary orbits is a fundamental concept in astronomy. Many secondary school students encounter difficulties comprehending the shape and characteristics of orbits, which are not perfect circles but ellipses with varying degrees of eccentricity. These challenges are particularly evident when students are tasked with sketching or calculating the eccentricity of a planet's orbit, a measure of how elongated the orbit is. This study aims to explore and compare the efficacy of two pedagogical approaches manual simulation and digital simulation—in enhancing students' understanding of planetary orbit shapes and the concept of eccentricity. A descriptive-comparative research design is employed to depict and contrast the effectiveness of these two teaching methods. The experiment, crafted based on expert design, involves four qualified astronomy educators to apply both approaches. The manual simulation requires students to draw orbits and compute eccentricity manually, whereas the digital simulation leverages software to visualize the motion of planetary orbits. Evaluation is conducted through Focus Group Discussions (FGD) with four subject matter experts to provide feedback on the effectiveness of the two methods, the challenges faced by students, and the level of comprehension achieved. The results from the manual experiment indicate that the orbital eccentricity ranges between 0.2 and 0.4, suggesting that the planets' orbits are elliptical. These findings align with Kepler’s laws, which state that planetary orbits are elliptical, with the Sun at one of the foci. Results from the NASA Eyes application further corroborate this, showing that the orbits of planets in the solar system are indeed elliptical, both at perihelion (the point closest to the Sun) and aphelion (the end farthest from the Sun). In conclusion, this research substantiates that the orbits of planets in the solar system are elliptical, consistent with Kepler's laws.

References

  • Adams, D., Carlson, H., & Hamm, M. (1990). Cooperative learning & educational media: Collaborating with technology and each other. Educational Technology.
  • Alifiyah, F. L. N., Firdaus, T., Wulandari, A. Y. R., & Putera, D. B. R. A. (2023). Cyberspace Metaverse Connected to Artificial Intelligence: Analysis of Merdeka Curriculum Interactive Multimedia Needs on Science Material. International Journal of Science Education and Teaching, 2(23), 150-161.
  • Bakas, C., & Mikropoulos, T. (2003). Design of virtual environments for the comprehension of planetary phenomena based on students' ideas. International journal of science education, 25(8), 949-967.
  • Bate, R. R., Mueller, D. D., White, J. E., & Saylor, W. W. (2020). Fundamentals of astrodynamics. Courier Dover Publications.
  • Barnett, M. (2005). Using virtual reality computer models to support student understanding of astronomical concepts. Journal of computers in Mathematics and Science Teaching, 24(4), 333-356.
  • Bertotti, B., Farinella, P., & Vokrouhlicky, D. (2012). Physics of the solar system: dynamics and evolution, space physics, and spacetime structure (Vol. 293). Springer Science & Business Media.
  • Chen, S. C., Hsiao, M. S., & She, H. C. (2015). The effects of static versus dynamic 3D representations on 10th grade students’ atomic orbital mental model construction: Evidence from eye movement behaviors. Computers in Human Behavior, 53, 169-180.
  • Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054-2067.
  • Criss, R. E., & Hofmeister, A. M. (2023). Analytical Solutions and a Clock for Orbital Progress Based on Symmetry of the Ellipse. Symmetry, 15(3), 641.
  • Eidikis, A., & Svensson, M. (2022). Exploring Astronomy in VR: Examining the effects on adolescents’ engagement in astronomy through an interactive VR learning environment.
  • Firdaus, T. (2023). Representative platform cyber metaverse terkoneksi BYOD sebagai upaya preventive urgensi digital pada sistem pendidikan Indonesia. Jurnal Integrasi dan Harmoni Inovatif Ilmu-Ilmu Sosial, 3(2), 123-131.
  • Galano, S., Colantonio, A., Leccia, S., Marzoli, I., Puddu, E., & Testa, I. (2018). Developing the use of visual representations to explain basic astronomy phenomena. Physical Review Physics Education Research, 14(1), 010145.
  • Gali, F. (2021). Secondary school children’s understanding of basic astronomy concepts. Journal of Studies in Social Sciences and Humanities, 7(3), 328-342.
  • Génot, V., Beigbeder, L., Popescu, D., Dufourg, N., Gangloff, M., Bouchemit, M., ... & Budnik, E. (2018). Science data visualization in planetary and heliospheric contexts with 3DView. Planetary and Space Science, 150, 111-130.
  • Greiner, W. (2004). The Earth and our Solar System. Classical Mechanics: Point Particles and Relativity, 295-359.
  • Gutzwiller, M. C. (1998). Moon-Earth-Sun: The oldest three-body problem. Reviews of Modern Physics, 70(2), 589.
  • Karttunen, H., Kröger, P., Oja, H., Poutanen, M., & Donner, K. J. (Eds.). (2007). Fundamental astronomy. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Murray, C.D., & Dermott, S.F. (1999). Solar System Dynamics. Cambridge University Press.
  • Sagardia, M., Hertkorn, K., Hulin, T., Schätzle, S., Wolff, R., Hummel, J., ... & Gerndt, A. (2015, March). VR-OOS: The DLR's virtual reality simulator for telerobotic on-orbit servicing with haptic feedback. In 2015 IEEE Aerospace Conference (pp. 1-17). IEEE.
  • Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94-116.
  • Voelkel, J. R. (2001). The Composition of Kepler’s Astronomia nova. Princeton University Press. https://doi.org/10.2307/j.ctv18zhdp2
  • Williamson, K. E., & Willoughby, S. D. (2012). Student understanding of gravity in introductory astronomy.
  • Woolfson, M. M. (2000). The origin and evolution of the solar system. CRC Press.
  • Wu, Y., & Lithwick, Y. (2013). Density and eccentricity of Kepler planets. The Astrophysical Journal, 772(1), 74.
  • Yu, K. C., Sahami, K., & Denn, G. (2010). Student ideas about Kepler’s laws and planetary orbital motions. Astronomy Education Review, 9(1), 010108-010117.

Orbital Eccentricity Study of Planets: A Comparative Analysis of Manual Simulation and Digital Visualization

Year 2025, Volume: 21 Issue: 2, 129 - 141
https://doi.org/10.17244/eku.1595205

Abstract

Bu çalışma, gezegen yörüngelerinin anlaşılmasının astronomi eğitimindeki temel kavramlardan biri olmasına rağmen ortaöğretim düzeyindeki öğrencilerin yörüngelerin biçimini ve özelliklerini kavramada önemli güçlükler yaşadığını vurgulamaktadır. Özellikle yörüngelerin kusursuz birer çember olmayıp değişen dışmerkezlik derecelerine sahip elipsler şeklinde olması, öğrencilerin hem çizim yaparken hem de dışmerkezlik hesaplamaya çalışırken zorlanmalarına neden olmaktadır. Bu araştırma, gezegen yörüngelerinin biçimi ve dışmerkezlik kavramının öğretiminde iki pedagojik yaklaşımın —manuel simülasyon ve dijital simülasyon— etkililiğini incelemeyi ve karşılaştırmayı amaçlamaktadır. Çalışmada, iki yöntemin etkililiğini betimlemek ve karşılaştırmak üzere betimsel-karşılaştırmalı araştırma deseni kullanılmıştır. Uzman görüşü doğrultusunda yapılandırılan deneysel uygulama kapsamında dört nitelikli astronomi eğitimcisi her iki yöntemi de gerçekleştirmiştir. Manuel simülasyon sürecinde öğrencilerden yörünge çizimleri yapmaları ve dışmerkezlik değerlerini elle hesaplamaları istenirken, dijital simülasyon sürecinde gezegen hareketlerini görselleştiren yazılımlar kullanılmıştır. Her iki yaklaşımın etkililiği, öğrencilerin karşılaştığı güçlükler ve kavrama düzeyleri dört uzmanla gerçekleştirilen odak grup görüşmeleri aracılığıyla değerlendirilmiştir. Manuel uygulamanın sonuçlarına göre yörünge dışmerkezliği 0,2 ile 0,4 arasında değişmekte olup gezegen yörüngelerinin eliptik olduğunu göstermektedir. Bu bulgular, Güneş’in odaklardan birinde yer aldığı eliptik yörüngeleri tanımlayan Kepler yasalarıyla uyumludur. NASA Eyes uygulamasından elde edilen sonuçlar da gezegenlerin hem Güneş’e en yakın noktaları olan günberi konumlarında hem de en uzak noktaları olan günöte konumlarında eliptik yörüngelere sahip olduğunu doğrulamaktadır. Sonuç olarak, bu çalışma Güneş Sistemi’ndeki gezegenlerin yörüngelerinin Kepler yasalarıyla tutarlı biçimde eliptik olduğunu ortaya koymaktadır.

References

  • Adams, D., Carlson, H., & Hamm, M. (1990). Cooperative learning & educational media: Collaborating with technology and each other. Educational Technology.
  • Alifiyah, F. L. N., Firdaus, T., Wulandari, A. Y. R., & Putera, D. B. R. A. (2023). Cyberspace Metaverse Connected to Artificial Intelligence: Analysis of Merdeka Curriculum Interactive Multimedia Needs on Science Material. International Journal of Science Education and Teaching, 2(23), 150-161.
  • Bakas, C., & Mikropoulos, T. (2003). Design of virtual environments for the comprehension of planetary phenomena based on students' ideas. International journal of science education, 25(8), 949-967.
  • Bate, R. R., Mueller, D. D., White, J. E., & Saylor, W. W. (2020). Fundamentals of astrodynamics. Courier Dover Publications.
  • Barnett, M. (2005). Using virtual reality computer models to support student understanding of astronomical concepts. Journal of computers in Mathematics and Science Teaching, 24(4), 333-356.
  • Bertotti, B., Farinella, P., & Vokrouhlicky, D. (2012). Physics of the solar system: dynamics and evolution, space physics, and spacetime structure (Vol. 293). Springer Science & Business Media.
  • Chen, S. C., Hsiao, M. S., & She, H. C. (2015). The effects of static versus dynamic 3D representations on 10th grade students’ atomic orbital mental model construction: Evidence from eye movement behaviors. Computers in Human Behavior, 53, 169-180.
  • Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054-2067.
  • Criss, R. E., & Hofmeister, A. M. (2023). Analytical Solutions and a Clock for Orbital Progress Based on Symmetry of the Ellipse. Symmetry, 15(3), 641.
  • Eidikis, A., & Svensson, M. (2022). Exploring Astronomy in VR: Examining the effects on adolescents’ engagement in astronomy through an interactive VR learning environment.
  • Firdaus, T. (2023). Representative platform cyber metaverse terkoneksi BYOD sebagai upaya preventive urgensi digital pada sistem pendidikan Indonesia. Jurnal Integrasi dan Harmoni Inovatif Ilmu-Ilmu Sosial, 3(2), 123-131.
  • Galano, S., Colantonio, A., Leccia, S., Marzoli, I., Puddu, E., & Testa, I. (2018). Developing the use of visual representations to explain basic astronomy phenomena. Physical Review Physics Education Research, 14(1), 010145.
  • Gali, F. (2021). Secondary school children’s understanding of basic astronomy concepts. Journal of Studies in Social Sciences and Humanities, 7(3), 328-342.
  • Génot, V., Beigbeder, L., Popescu, D., Dufourg, N., Gangloff, M., Bouchemit, M., ... & Budnik, E. (2018). Science data visualization in planetary and heliospheric contexts with 3DView. Planetary and Space Science, 150, 111-130.
  • Greiner, W. (2004). The Earth and our Solar System. Classical Mechanics: Point Particles and Relativity, 295-359.
  • Gutzwiller, M. C. (1998). Moon-Earth-Sun: The oldest three-body problem. Reviews of Modern Physics, 70(2), 589.
  • Karttunen, H., Kröger, P., Oja, H., Poutanen, M., & Donner, K. J. (Eds.). (2007). Fundamental astronomy. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Murray, C.D., & Dermott, S.F. (1999). Solar System Dynamics. Cambridge University Press.
  • Sagardia, M., Hertkorn, K., Hulin, T., Schätzle, S., Wolff, R., Hummel, J., ... & Gerndt, A. (2015, March). VR-OOS: The DLR's virtual reality simulator for telerobotic on-orbit servicing with haptic feedback. In 2015 IEEE Aerospace Conference (pp. 1-17). IEEE.
  • Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94-116.
  • Voelkel, J. R. (2001). The Composition of Kepler’s Astronomia nova. Princeton University Press. https://doi.org/10.2307/j.ctv18zhdp2
  • Williamson, K. E., & Willoughby, S. D. (2012). Student understanding of gravity in introductory astronomy.
  • Woolfson, M. M. (2000). The origin and evolution of the solar system. CRC Press.
  • Wu, Y., & Lithwick, Y. (2013). Density and eccentricity of Kepler planets. The Astrophysical Journal, 772(1), 74.
  • Yu, K. C., Sahami, K., & Denn, G. (2010). Student ideas about Kepler’s laws and planetary orbital motions. Astronomy Education Review, 9(1), 010108-010117.
There are 25 citations in total.

Details

Primary Language English
Subjects Classroom Education, Physics Education, Science Education
Journal Section Research Article
Authors

Thoriqi Firdaus 0009-0005-2340-8468

Listiawan Listiawan This is me 0009-0003-4808-6878

Riski Dewanto This is me 0009-0009-9991-2440

Ihza Rizky Winedar This is me 0009-0005-3615-0873

Publication Date December 4, 2025
Submission Date December 3, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2025 Volume: 21 Issue: 2

Cite

APA Firdaus, T., Listiawan, L., Dewanto, R., Winedar, I. R. (n.d.). Orbital Eccentricity Study of Planets: A Comparative Analysis of Manual Simulation and Digital Visualization. Eğitimde Kuram Ve Uygulama, 21(2), 129-141. https://doi.org/10.17244/eku.1595205