Research Article
BibTex RIS Cite

An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling

Year 2018, Volume: 18 Issue: 1, 1 - 5, 23.02.2018

Abstract

Modeling a dead-time
system is a common issue in engineering applications. To address this issue,
existing research has employed neural networks and fuzzy logic-based intelligent
systems. Herein, a dead-time system modeled with the aid of support vector
machine regression, which has a good generalization feature, was investigated.
The performance of the method proposed herein was examined with different
parameters in linear and nonlinear dead-time systems.

References

  • 1. V. N. Vapnik. “Statistical Learning Theory”, John Wiley and Sons, New York, 1998. 2. V. N. Vapnik. “The Nature of Statistical Learning Theory”, Springer-Verlag. New York, 1995. 3. C. Junli, J. Licheng, “Classification Mechanism of Support Vector Machines”, IEEE Proceedings of ICSP p. 1556-1559, 2000. 4. A. Smola, B. Scholkopf, “A Tutorial on Support Vector Regression”, NeuroCOLT2 Technical Report NC-TR pp. 98-30, 1998. 5. L. Guohai, Z. Dawei, X. Haixia, M. Congli “Soft sensor modeling using SVM in fermentation process”, Chinese Journal of Scientific Instrument, vol. 6, 2009. 6. V. Kecman, “Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models”, Cambridge, Mass.: MIT Press, 2001. 7. C. Campbell, “Kernel Methods: A Survey of Current Techniques”, Neurocomputing vol. 48, pp. 63-84, 2002. 8. Z. Hongdong, S. Huihe, “A Novel Method of Process Dead-Time Identification: Support Vector Machine Approach”, Proceeding of American Control Conference, pp. 880- 884, 2004. 9. G. Yan, C. Li, G. Ma, “Parameter selection for support vector machines based on hybrid genetic algorithms”, Journal of Harbin Institute of Technology, vol.5, 2008. 10. H. Zhang, X. Wang, C. Zhang, X. Xu, “Modeling Nonlinear Dynamical Systems Using Support Vector Machine”, Proceeding of 4. International Conf. On Machine Learning and Cybernetics, pp. 3204-3209, 2005. 11. J. Ma, J. Theiler, S. Perkins, “Accurate on-line support vector regression”, Neural Computation, vol.15, pp. 2683-2703, 2003. 12. http://www.sciencedirect.com/science/article/pii/S1226086X13003742 - !A. M. Ghaedi, M. Hossainpour, A. Ansari, M.H. Habibi, A.R. Asghari “Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon”Journal of Industrial and Engineering Chemistry, Volume 20, Issue 4, 25 July 2014, pp. 1641-1649.
Year 2018, Volume: 18 Issue: 1, 1 - 5, 23.02.2018

Abstract

References

  • 1. V. N. Vapnik. “Statistical Learning Theory”, John Wiley and Sons, New York, 1998. 2. V. N. Vapnik. “The Nature of Statistical Learning Theory”, Springer-Verlag. New York, 1995. 3. C. Junli, J. Licheng, “Classification Mechanism of Support Vector Machines”, IEEE Proceedings of ICSP p. 1556-1559, 2000. 4. A. Smola, B. Scholkopf, “A Tutorial on Support Vector Regression”, NeuroCOLT2 Technical Report NC-TR pp. 98-30, 1998. 5. L. Guohai, Z. Dawei, X. Haixia, M. Congli “Soft sensor modeling using SVM in fermentation process”, Chinese Journal of Scientific Instrument, vol. 6, 2009. 6. V. Kecman, “Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models”, Cambridge, Mass.: MIT Press, 2001. 7. C. Campbell, “Kernel Methods: A Survey of Current Techniques”, Neurocomputing vol. 48, pp. 63-84, 2002. 8. Z. Hongdong, S. Huihe, “A Novel Method of Process Dead-Time Identification: Support Vector Machine Approach”, Proceeding of American Control Conference, pp. 880- 884, 2004. 9. G. Yan, C. Li, G. Ma, “Parameter selection for support vector machines based on hybrid genetic algorithms”, Journal of Harbin Institute of Technology, vol.5, 2008. 10. H. Zhang, X. Wang, C. Zhang, X. Xu, “Modeling Nonlinear Dynamical Systems Using Support Vector Machine”, Proceeding of 4. International Conf. On Machine Learning and Cybernetics, pp. 3204-3209, 2005. 11. J. Ma, J. Theiler, S. Perkins, “Accurate on-line support vector regression”, Neural Computation, vol.15, pp. 2683-2703, 2003. 12. http://www.sciencedirect.com/science/article/pii/S1226086X13003742 - !A. M. Ghaedi, M. Hossainpour, A. Ansari, M.H. Habibi, A.R. Asghari “Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon”Journal of Industrial and Engineering Chemistry, Volume 20, Issue 4, 25 July 2014, pp. 1641-1649.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nihat Kabaoğlu

Rana Ortaç Kabaoğlu This is me

Publication Date February 23, 2018
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Kabaoğlu, N., & Ortaç Kabaoğlu, R. (2018). An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling. Electrica, 18(1), 1-5.
AMA Kabaoğlu N, Ortaç Kabaoğlu R. An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling. Electrica. February 2018;18(1):1-5.
Chicago Kabaoğlu, Nihat, and Rana Ortaç Kabaoğlu. “An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling”. Electrica 18, no. 1 (February 2018): 1-5.
EndNote Kabaoğlu N, Ortaç Kabaoğlu R (February 1, 2018) An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling. Electrica 18 1 1–5.
IEEE N. Kabaoğlu and R. Ortaç Kabaoğlu, “An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling”, Electrica, vol. 18, no. 1, pp. 1–5, 2018.
ISNAD Kabaoğlu, Nihat - Ortaç Kabaoğlu, Rana. “An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling”. Electrica 18/1 (February 2018), 1-5.
JAMA Kabaoğlu N, Ortaç Kabaoğlu R. An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling. Electrica. 2018;18:1–5.
MLA Kabaoğlu, Nihat and Rana Ortaç Kabaoğlu. “An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling”. Electrica, vol. 18, no. 1, 2018, pp. 1-5.
Vancouver Kabaoğlu N, Ortaç Kabaoğlu R. An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling. Electrica. 2018;18(1):1-5.