Research Article
BibTex RIS Cite

A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis

Year 2018, Volume: 18 Issue: 1, 39 - 44, 23.02.2018

Abstract

A molecularly imprinted
polymer (MIP)-based impedimetric biosensor was developed for the
electrochemical analysis of low-weight biological molecules. Synthetic
polymeric matrices with specific and selective recognition sites, which are
complementary to the shapes and sizes of the functional groups of analytes, can
be prepared using the molecular imprinting method. In this study, a small
molecule, tris(hydroxymethyl)aminomethane (TRIS), was used to coat a graphite
pencil tip with a TRIS-containing polyacrylamide gel to fabricate a working
electrode. The electrode modification and performance were evaluated using
cyclic voltammetry and electrochemical impedance spectroscopy. The
electrochemical properties of the modified electrodes were observed using an
electrochemical cell comprising a Ag/AgCl reference electrode, a Pt wire as the
counter electrode, and a pencil graphite tip as the working electrode using a
redox-phosphate buffer solution with different concentrations of TRIS and
Ethylenediaminetetraacetic acid (EDTA). The I–V and impedance performance of the chemically
modified graphite pencil-tip electrodes exhibited decreased conductance and
increased impedance correlating with  the
increase in TRIS concentration. Thus,
MIP-based small-molecule biosensor prototypes can be promising economical
replacements over other expensive sensors.

References

  • 1. A. Turner, I. Karube, G. S. Wilson, “Biosensors: Fundamentals and Applications”, Oxford University Press, Oxford, U.K., 1987.
  • 2. F. G. Banica, ed., “Chemical Sensors and Biosensors: Fundamentals and Applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2012.
  • 3. B. R. Eggins, “Chemical Sensors and Biosensors”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2002.
  • 4. S. Yan, Y. Fang, Z. Gao, “Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1087-1091, Apr, 2007.
  • 5. C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, and M. J. Whitcombe, “Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003”, J Molecular Recognition, vol. 19, no. 2, pp. 106-180, Jan, 2006.
  • 6. W. Li and S. Li, “Oligomers-Polymer Composites-Molecular Imprinting”, Springer, Berlin-Heidelberg, Germany, 2006.
  • 7. G. Guan, B. Liu, Z. Wang, Z. Zhang, “Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors”, Sensors, vol. 8, no. 12, pp. 8291-8320, Dec, 2008.
  • 8. L. Ye and K. Haupt, “Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery”, Analytical and Bioanalytical Chemistry, vol. 378, no. 8, pp. 1887-1897, Jan, 2004.
  • 9. A. Bossi, F. Bonini, A. P. F Turner and S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: the state of the art”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1131-1137, Jan, 2007.
  • 10. E. Caro, N. Masqué, R. M. Marcé, F. Borrull, P. A. Cormack, and D. C. Sherrington, “Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples”, J Chromatography A, vol. 963, no. 1, pp. 169-178, July, 2002.
  • 11. G. Vasapollo, R. D. Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano, and G. Mele, “Molecularly imprinted polymers: present and future prospective”, Int. J Mol Sci, vol. 12, no. 9, pp. 5908-5945, Sept 14, 2011.
  • 12. G. Gomori, “Preparation of Buffers for Use in Enzyme Studies”, Methods Enzymol., vol. 1, pp. 138-146, 1955.
  • 13. E. Barsoukov and J. R. Macdonald, “Impedance spectroscopy: theory, experiment, and applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2005.
  • 14. B. Ozcan, B. Demirbakan, G. Yesiller and M.K. Sezginturk, “Introducing a new method for evaluation of the interaction between an antigen and an antibody: Single frequency impedance analysis for biosensing systems”, Talanta, vol. 125, pp. 7-13, July, 2014.
  • 15. S. N. Topkaya, D. Ozkan-Ariksoysal, B. Kosova, R. Ozel and M. Ozsoz, “Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples”, Biosensors and Bioelectronics, vol. 31, no. 1, pp. 516-522, Jan, 2012.
  • 16. E. Asav and M. K. Sezginturk, “A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker”, Int. J Biological Macromolecules, vol. 66, pp. 273-280, May, 2014.
  • 17. L. Figueiredo, M. F. R., Pereira, M. M. A. Freitas and J. J. M. Orfao, “Modification of the surface chemistry of activated carbons”, Carbon, vol. 37, no. 9, pp. 1379-1389, Dec, 1999.
  • 18. I. G. David, D.-E. Popa and M. Buleandra, “Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis”, J Analytical Methods in Chemistry, https://doi.org/10.1155/2017/1905968, Jan, 2017.
  • 19. I. S. Park and N. Kim, “Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal”, Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, Nov, 1998.
  • 20. I. Markovich and D. Mandler, “The effect of an alkylsilane monolayer on an indium tin oxide surface on the electrochemistry of hexacyanoferrate”, J Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, Apr, 2000.
Year 2018, Volume: 18 Issue: 1, 39 - 44, 23.02.2018

Abstract

References

  • 1. A. Turner, I. Karube, G. S. Wilson, “Biosensors: Fundamentals and Applications”, Oxford University Press, Oxford, U.K., 1987.
  • 2. F. G. Banica, ed., “Chemical Sensors and Biosensors: Fundamentals and Applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2012.
  • 3. B. R. Eggins, “Chemical Sensors and Biosensors”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2002.
  • 4. S. Yan, Y. Fang, Z. Gao, “Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1087-1091, Apr, 2007.
  • 5. C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, and M. J. Whitcombe, “Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003”, J Molecular Recognition, vol. 19, no. 2, pp. 106-180, Jan, 2006.
  • 6. W. Li and S. Li, “Oligomers-Polymer Composites-Molecular Imprinting”, Springer, Berlin-Heidelberg, Germany, 2006.
  • 7. G. Guan, B. Liu, Z. Wang, Z. Zhang, “Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors”, Sensors, vol. 8, no. 12, pp. 8291-8320, Dec, 2008.
  • 8. L. Ye and K. Haupt, “Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery”, Analytical and Bioanalytical Chemistry, vol. 378, no. 8, pp. 1887-1897, Jan, 2004.
  • 9. A. Bossi, F. Bonini, A. P. F Turner and S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: the state of the art”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1131-1137, Jan, 2007.
  • 10. E. Caro, N. Masqué, R. M. Marcé, F. Borrull, P. A. Cormack, and D. C. Sherrington, “Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples”, J Chromatography A, vol. 963, no. 1, pp. 169-178, July, 2002.
  • 11. G. Vasapollo, R. D. Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano, and G. Mele, “Molecularly imprinted polymers: present and future prospective”, Int. J Mol Sci, vol. 12, no. 9, pp. 5908-5945, Sept 14, 2011.
  • 12. G. Gomori, “Preparation of Buffers for Use in Enzyme Studies”, Methods Enzymol., vol. 1, pp. 138-146, 1955.
  • 13. E. Barsoukov and J. R. Macdonald, “Impedance spectroscopy: theory, experiment, and applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2005.
  • 14. B. Ozcan, B. Demirbakan, G. Yesiller and M.K. Sezginturk, “Introducing a new method for evaluation of the interaction between an antigen and an antibody: Single frequency impedance analysis for biosensing systems”, Talanta, vol. 125, pp. 7-13, July, 2014.
  • 15. S. N. Topkaya, D. Ozkan-Ariksoysal, B. Kosova, R. Ozel and M. Ozsoz, “Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples”, Biosensors and Bioelectronics, vol. 31, no. 1, pp. 516-522, Jan, 2012.
  • 16. E. Asav and M. K. Sezginturk, “A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker”, Int. J Biological Macromolecules, vol. 66, pp. 273-280, May, 2014.
  • 17. L. Figueiredo, M. F. R., Pereira, M. M. A. Freitas and J. J. M. Orfao, “Modification of the surface chemistry of activated carbons”, Carbon, vol. 37, no. 9, pp. 1379-1389, Dec, 1999.
  • 18. I. G. David, D.-E. Popa and M. Buleandra, “Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis”, J Analytical Methods in Chemistry, https://doi.org/10.1155/2017/1905968, Jan, 2017.
  • 19. I. S. Park and N. Kim, “Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal”, Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, Nov, 1998.
  • 20. I. Markovich and D. Mandler, “The effect of an alkylsilane monolayer on an indium tin oxide surface on the electrochemistry of hexacyanoferrate”, J Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, Apr, 2000.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Feride Şermin Utku

Ozan Enver Özdemir This is me

Melahat Sevgül Bakay This is me

Publication Date February 23, 2018
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Utku, F. Ş., Özdemir, O. E., & Bakay, M. S. (2018). A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis. Electrica, 18(1), 39-44.
AMA Utku FŞ, Özdemir OE, Bakay MS. A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis. Electrica. February 2018;18(1):39-44.
Chicago Utku, Feride Şermin, Ozan Enver Özdemir, and Melahat Sevgül Bakay. “A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis”. Electrica 18, no. 1 (February 2018): 39-44.
EndNote Utku FŞ, Özdemir OE, Bakay MS (February 1, 2018) A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis. Electrica 18 1 39–44.
IEEE F. Ş. Utku, O. E. Özdemir, and M. S. Bakay, “A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis”, Electrica, vol. 18, no. 1, pp. 39–44, 2018.
ISNAD Utku, Feride Şermin et al. “A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis”. Electrica 18/1 (February 2018), 39-44.
JAMA Utku FŞ, Özdemir OE, Bakay MS. A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis. Electrica. 2018;18:39–44.
MLA Utku, Feride Şermin et al. “A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis”. Electrica, vol. 18, no. 1, 2018, pp. 39-44.
Vancouver Utku FŞ, Özdemir OE, Bakay MS. A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis. Electrica. 2018;18(1):39-44.