BibTex RIS Cite

Yapay Sinir Aglari ile Bipolar Transistorun Matematiksel Modelinin Olusturulmasi

Year 2006, Volume: 2 Issue: 2, 30 - 35, 01.08.2006

Abstract

Yapay Sinir Aglari (YSA), giris verilerinin yetersiz oldugu, mevcut verilerden hareketle bilinmeyen
iliskilerin ortaya çikarilmasi ve algoritmasi veya kurallari tam olarak bilinmeyen durumlar için gelistirilmis bir bilgi
isleme sistemidir. Bu çalismada, YSA mimarisi kullanilarak, bipolar transistorlara ait gerçek karakteristikler
üzerinden belirlenen az sayida veriyle transistora iliskin matematiksel model olusturulmustur. BJT transistorlara ait
geçis karakteristigi verileri giris vektörü olarak aga sunulmus ve YSA’nin egitim islemi bu karakteristikler
üzerinden gerçeklestirilmistir. Egitiminin ardindan degisik transistorlara ait test girisleriyle YSA’nin ögrenme
basarimi denenmis, degisik transistorlara ait modellerinin matematiksel olarak yüksek dogrulukta olusturuldugu
gösterilmistir.

Mathematical Modelling of the Bipolar Transistor using Artificial Neural Networks

Year 2006, Volume: 2 Issue: 2, 30 - 35, 01.08.2006

Abstract

Requirements for circuit simulation are increasing according to the development of system integration
with many different functions. To assist the development, the most important modeling issue is to guarantee
sufficient simulation accuracy and applicability for any advanced technology. For achieving this task it is inevitable
to maintain a physically correct modeling of the real technology processes which govern the function of these BJT’s,
even in the circuit simulation model. Here the approaches to realize the outlined requirements are summarized.

There are 0 citations in total.

Details

Other ID JA52MH99GF
Journal Section Articles
Authors

Burhan Baraklı This is me

Suayb Yener This is me

Evren Arslan This is me

Publication Date August 1, 2006
Submission Date August 1, 2006
Published in Issue Year 2006 Volume: 2 Issue: 2

Cite

APA Baraklı, B., Yener, S., & Arslan, E. (2006). Mathematical Modelling of the Bipolar Transistor using Artificial Neural Networks. Electronic Letters on Science and Engineering, 2(2), 30-35.