Year 2023,
, 122 - 127, 20.06.2023
Abdullah Kocamer
,
Hasan Çınar
,
Metin Uzun
,
Sezer Çoban
References
- [1] A. G. Korchenko and O. S. Illyash, “The generalized classification of Unmanned Air Vehicles,” 2013 IEEE 2nd Int. Conf. Actual Probl. Unmanned Air Veh. Dev. APUAVD 2013 - Proc., pp. 28–34, 2013, doi: 10.1109/APUAVD.2013.6705275.
- [2] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91, no. April, pp. 99–131, 2017, doi: 10.1016/j.paerosci.2017.04.003.
- [3] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, 2022, doi: 10.3390/drones6060147.
- [4] B. Lu and Y. He, “Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland,” ISPRS J. Photogramm. Remote Sens., vol. 128, pp. 73–85, 2017, doi: 10.1016/j.isprsjprs.2017.03.011.
- [5] S. Coban, H. H. Bilgic, and E. Akan, “Improving autonomous performance of a passive morphing fixed-wing UAV,” Inf. Technol. Control, vol. 49, no. 1, pp. 28–35, 2020, doi: 10.5755/j01.itc.49.1.23275.
- [6] S. COBAN, H. hüseyin Bilgiç, and T. Oktay, “Designing, Dynamic Modeling and Simulation of ISTECOPTER,” J. Aviat., vol. 3, no. 1, pp. 38–44, 2019, doi: 10.30518/jav.564376.
- [7] N. Muralidharan, V. G. Pratheep, A. Shanmugam, A. Hariram, P. Dinesh, and B. Visnu, “Structural analysis of mini drone developed using 3D printing technique,” Mater. Today Proc., vol. 46, pp. 8748–8752, 2021, doi: 10.1016/j.matpr.2021.04.053.
- [8] S. D. Shelare, K. R. Aglawe, and P. B. Khope, “Computer aided modeling and finite element analysis of 3-D printed drone,” Mater. Today Proc., vol. 47, pp. 3375–3379, 2021, doi: 10.1016/j.matpr.2021.07.162.
- [9] S. Sundararaj, K. Dharsan, J. Ganeshraman, and D. Rajarajeswari, “Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame,” Mater. Today Proc., vol. 37, no. Part 2, pp. 409–418, 2020, doi: 10.1016/j.matpr.2020.05.397.
- [10] A. V. Javir, K. Pawar, S. Dhudum, N. Patale, and S. Patil, “Design, Analysis and Fabrication of Quadcopter,” J. Adv. Res. Mech. Civ. Eng. (ISSN 2208-2379), vol. 2, no. 3, pp. 16–27, 2015, doi: 10.53555/nnmce.v2i3.342.
- [11] M. Kim, H. Ryu, T. Kim, Y. Kim, J. Doh, and S. Kim, “The Design Improvement of a Rotary-Wing Aircraft Frame Considering Fatigue Life and Fracture Characteristics,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 6, pp. 1313–1320, 2021, doi: 10.1007/s42405-021-00410-x.
- [12] A. Aribowo et al., “Finite element method on topology optimization applied to laminate composite of fuselage structure,” Curved Layer. Struct., vol. 10, no. 1, 2023, doi: 10.1515/cls-2022-0191.
- [13] H. Guo, M. Li, P. Sun, C. Zhao, W. Zuo, and X. Li, “Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design,” Adv. Mech. Eng., vol. 13, no. 7, pp. 1–10, 2021, doi: 10.1177/16878140211034999.
- [14] S. Nvss, B. Esakki, L. J. Yang, C. Udayagiri, and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Designs, vol. 6, no. 1, 2022, doi: 10.3390/designs6010008.
- [15] S. K. Moon, Y. E. Tan, J. Hwang, and Y. J. Yoon, “Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 1, no. 3, pp. 223–228, 2014, doi: 10.1007/s40684-014-0028-x.
- [16] L. J. Yang, B. Esakki, U. Chandrasekhar, K. C. Hung, and C. M. Cheng, “Practical flapping mechanisms for 20 cm-span micro air vehicles,” Int. J. Micro Air Veh., vol. 7, no. 2, pp. 181–202, 2015, doi: 10.1260/1756-8293.7.2.181.
- [17] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robot. Autom. Mag., vol. 19, no. 3, pp. 20–32, 2012, doi: 10.1109/MRA.2012.2206474.
- [18] V. Bhatia, R. Karthikeyan, R. K. Ganesh Ram, and Y. N. Cooper, “Design optimisation and analysis of a quadrotor arm using finite element method,” in Applied Mechanics and Materials, 2014, vol. 664, pp. 371–375.
- [19] S. P. Yeong, L. M. King, and S. S. Dol, “A Review on Marine Search and Rescue Operations Using Unmanned Aerial Vehicles,” Int. J. Mar. Environ. Sci., vol. 9, no. 2, pp. 396–399, 2015.
- [20] S. Delfel, “Introduction to Mesh Generation with ANSYS workbench,” Coanda Res. Dev. Corp., 2013.,
Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis
Year 2023,
, 122 - 127, 20.06.2023
Abdullah Kocamer
,
Hasan Çınar
,
Metin Uzun
,
Sezer Çoban
Abstract
In this study, numerical analysis of the fuselage of a rotary wing unmanned aerial vehicle was conducted. A fuselage that is resistant to the loads on the fuselage and has maximum lightness has been designed. In this context, the fuselage design was conducted based on the loads that the aircraft's fuselage would be exposed to during landing and take-off, and a three-dimensional modeling was created. Numerical analyzes were carried out using the designed solid model finite element method. It has been observed that the obtained data can meet the loads on the airframe without any breakage in the specified configuration. The findings obtained at the end of the study were supported by graphics
References
- [1] A. G. Korchenko and O. S. Illyash, “The generalized classification of Unmanned Air Vehicles,” 2013 IEEE 2nd Int. Conf. Actual Probl. Unmanned Air Veh. Dev. APUAVD 2013 - Proc., pp. 28–34, 2013, doi: 10.1109/APUAVD.2013.6705275.
- [2] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91, no. April, pp. 99–131, 2017, doi: 10.1016/j.paerosci.2017.04.003.
- [3] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, 2022, doi: 10.3390/drones6060147.
- [4] B. Lu and Y. He, “Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland,” ISPRS J. Photogramm. Remote Sens., vol. 128, pp. 73–85, 2017, doi: 10.1016/j.isprsjprs.2017.03.011.
- [5] S. Coban, H. H. Bilgic, and E. Akan, “Improving autonomous performance of a passive morphing fixed-wing UAV,” Inf. Technol. Control, vol. 49, no. 1, pp. 28–35, 2020, doi: 10.5755/j01.itc.49.1.23275.
- [6] S. COBAN, H. hüseyin Bilgiç, and T. Oktay, “Designing, Dynamic Modeling and Simulation of ISTECOPTER,” J. Aviat., vol. 3, no. 1, pp. 38–44, 2019, doi: 10.30518/jav.564376.
- [7] N. Muralidharan, V. G. Pratheep, A. Shanmugam, A. Hariram, P. Dinesh, and B. Visnu, “Structural analysis of mini drone developed using 3D printing technique,” Mater. Today Proc., vol. 46, pp. 8748–8752, 2021, doi: 10.1016/j.matpr.2021.04.053.
- [8] S. D. Shelare, K. R. Aglawe, and P. B. Khope, “Computer aided modeling and finite element analysis of 3-D printed drone,” Mater. Today Proc., vol. 47, pp. 3375–3379, 2021, doi: 10.1016/j.matpr.2021.07.162.
- [9] S. Sundararaj, K. Dharsan, J. Ganeshraman, and D. Rajarajeswari, “Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame,” Mater. Today Proc., vol. 37, no. Part 2, pp. 409–418, 2020, doi: 10.1016/j.matpr.2020.05.397.
- [10] A. V. Javir, K. Pawar, S. Dhudum, N. Patale, and S. Patil, “Design, Analysis and Fabrication of Quadcopter,” J. Adv. Res. Mech. Civ. Eng. (ISSN 2208-2379), vol. 2, no. 3, pp. 16–27, 2015, doi: 10.53555/nnmce.v2i3.342.
- [11] M. Kim, H. Ryu, T. Kim, Y. Kim, J. Doh, and S. Kim, “The Design Improvement of a Rotary-Wing Aircraft Frame Considering Fatigue Life and Fracture Characteristics,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 6, pp. 1313–1320, 2021, doi: 10.1007/s42405-021-00410-x.
- [12] A. Aribowo et al., “Finite element method on topology optimization applied to laminate composite of fuselage structure,” Curved Layer. Struct., vol. 10, no. 1, 2023, doi: 10.1515/cls-2022-0191.
- [13] H. Guo, M. Li, P. Sun, C. Zhao, W. Zuo, and X. Li, “Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design,” Adv. Mech. Eng., vol. 13, no. 7, pp. 1–10, 2021, doi: 10.1177/16878140211034999.
- [14] S. Nvss, B. Esakki, L. J. Yang, C. Udayagiri, and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Designs, vol. 6, no. 1, 2022, doi: 10.3390/designs6010008.
- [15] S. K. Moon, Y. E. Tan, J. Hwang, and Y. J. Yoon, “Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 1, no. 3, pp. 223–228, 2014, doi: 10.1007/s40684-014-0028-x.
- [16] L. J. Yang, B. Esakki, U. Chandrasekhar, K. C. Hung, and C. M. Cheng, “Practical flapping mechanisms for 20 cm-span micro air vehicles,” Int. J. Micro Air Veh., vol. 7, no. 2, pp. 181–202, 2015, doi: 10.1260/1756-8293.7.2.181.
- [17] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robot. Autom. Mag., vol. 19, no. 3, pp. 20–32, 2012, doi: 10.1109/MRA.2012.2206474.
- [18] V. Bhatia, R. Karthikeyan, R. K. Ganesh Ram, and Y. N. Cooper, “Design optimisation and analysis of a quadrotor arm using finite element method,” in Applied Mechanics and Materials, 2014, vol. 664, pp. 371–375.
- [19] S. P. Yeong, L. M. King, and S. S. Dol, “A Review on Marine Search and Rescue Operations Using Unmanned Aerial Vehicles,” Int. J. Mar. Environ. Sci., vol. 9, no. 2, pp. 396–399, 2015.
- [20] S. Delfel, “Introduction to Mesh Generation with ANSYS workbench,” Coanda Res. Dev. Corp., 2013.,